8 research outputs found

    Developing Safety Criteria for Introducing New Agents into Neoadjuvant Trials

    No full text
    New approaches to drug development are critically needed to lessen the time, cost, and resources necessary to identify and optimize active agents. Strategies to accelerate drug development include testing drugs earlier in the disease process, such as the neoadjuvant setting. The U.S. Food and Drug Administration (FDA) has issued guidance designed to accelerate drug approval through the use of neoadjuvant studies in which the surrogate short-term endpoint, pathologic response, can be used to identify active agents and shorten the time to approval of both efficacious drugs and biomarkers identifying patients most likely to respond. However, this approach has unique challenges. In particular, issues of patient safety are paramount, given the exposure of potentially curable patients to investigational agents with limited safety experience. Key components to safe drug development in the neoadjuvant setting include defining a study population at sufficiently poor prognosis with standard therapy to justify exposure to investigational agents, defining the extent and adequacy of safety data from phase I, detecting potentially harmful interactions between investigational and standard therapies, improving study designs, such as adaptive strategies, that limit patient exposure to ineffective agents, and intensifying safety monitoring in the course of the trial. The I-SPY2 trial is an example of a phase II neoadjuvant trial of novel agents for breast cancer in which these issues have been addressed, both in the design and conduct of the trial. These adaptations of phase II design enable acceleration of drug development by reducing time and cost to screen novel therapies for activity without compromising safety

    Adaptive Randomization of Neratinib in Early Breast Cancer

    No full text
    BACKGROUND: I-SPY2, a standing, multicenter, adaptive phase 2 neoadjuvant trial ongoing in high-risk clinical stage II/III breast cancer, is designed to evaluate multiple, novel experimental agents added to standard chemotherapy for their ability to improve the rate of pathologic complete response (pCR). Experimental therapies are compared against a common control arm. We report efficacy for the tyrosine kinase inhibitor neratinib. METHODS: Eligible women had ≥2.5 cm stage II/III breast cancer, categorized into 8 biomarker subtypes based on HER2, hormone-receptor status (HR), and MammaPrint. Neratinib was evaluated for 10 signatures (prospectively defined subtype combinations), with primary endpoint pCR. MR volume changes inform likelihood of pCR for each patient prior to surgery. Adaptive assignment to experimental arms within disease subtype was based on current Bayesian probabilities of superiority over control. Accrual to experimental arm stop at any time for futility or graduation within a particular signature based on Bayesian predictive probability of success in a confirmatory trial. The maximum sample size in any experimental arm is 120 patients, RESULTS: With 115 patients and 78 concurrently randomized controls, neratinib graduated in the HER2+/HR− signature, with mean pCR rate 56% (95% PI: 37 to 73%) vs 33% for controls (11 to 54%). Final predictive probability of success, updated when all pathology data were available, was 79%. CONCLUSION: Adaptive, multi-armed trials can efficiently identify responding tumor subtypes. Neratinib added to standard therapy is highly likely to improve pCR rates in HER2+/HR2212; breast cancer. Confirmation in I-SPY 3, a phase 3 neoadjuvant registration trial, is planned

    Adaptive Randomization of Veliparib–Carboplatin Treatment in Breast Cancer

    No full text
    BACKGROUND: I-SPY 2 is a phase 2 standing multicenter platform trial designed to screen multiple experimental regimens in combination with standard neoadjuvant chemotherapy for breast cancer. The goal is to matching experimental regimens with responding patient subtypes. We report results for veliparib, a poly(ADP-ribose) polymerase (PARP) inhibitor, combined with carboplatin (VC). METHODS: Eligible women had ≥2.5 cm stage II/III breast cancer, categorized into 8 biomarker subtypes based on HER2, hormone-receptor status (HR) and MammaPrint. Patients are adaptively randomized within subtype to better performing regimens compared to standard therapy (control). Regimens are evaluated within 10 signatures, prospectively defined combinations of subtypes. VC plus standard therapy was considered for HER2-negative tumors and therefore evaluated in 3 signatures. The primary endpoint of I-SPY 2 is pathologic complete response (pCR). MR volume changes during treatment inform the likelihood that a patient will achieve pCR. Regimens graduate if and when they have a high (Bayesian) predictive probability of success in a subsequent phase 3 neoadjuvant trial within the graduating signature. RESULTS: VC graduated in triple-negative breast cancer with 88% predicted probability of phase 3 success. A total of 72 patients were randomized to VC and 44 to concurrent controls. Respective pCR estimates (95% probability intervals) were 51% (35%–69%) vs 26% (11%–40%). Greater toxicity of VC was manageable. CONCLUSION: The design of I-SPY 2 has the potential to efficiently identify responding tumor subtypes for the various therapies being evaluated. VC added to standard therapy improves pCR rates specifically in triple-negative breast cancer
    corecore