3 research outputs found

    Exposure-Response Analyses of Asbestos and Lung Cancer Subtypes in a Pooled Analysis of Case-Control Studies

    Get PDF
    International audienceBACKGROUND:Evidence is limited regarding risk and the shape of the exposure-response curve at low asbestos exposure levels. We estimated the exposure-response for occupational asbestos exposure and assessed the joint effect of asbestos exposure and smoking by sex and lung cancer subtype in general population studies.METHODS:We pooled 14 case-control studies conducted in 1985-2010 in Europe and Canada, including 17,705 lung cancer cases and 21,813 controls with detailed information on tobacco habits and lifetime occupations. We developed a quantitative job-exposure-matrix to estimate job-, time period-, and region-specific exposure levels. Fiber-years (ff/ml-years) were calculated for each subject by linking the matrix with individual occupational histories. We fit unconditional logistic regression models to estimate odds ratios (ORs), 95% confidence intervals (CIs), and trends.RESULTS:The fully adjusted OR for ever-exposure to asbestos was 1.24 (95% CI, 1.18, 1.31) in men and 1.12 (95% CI, 0.95, 1.31) in women. In men, increasing lung cancer risk was observed with increasing exposure in all smoking categories and for all three major lung cancer subtypes. In women, lung cancer risk for all subtypes was increased in current smokers (ORs ~two-fold). The joint effect of asbestos exposure and smoking did not deviate from multiplicativity among men, and was more than additive among women.CONCLUSIONS:Our results in men showed an excess risk of lung cancer and its subtypes at low cumulative exposure levels, with a steeper exposure-response slope in this exposure range than at higher, previously studied levels. (See video abstract at, http://links.lww.com/EDE/B161.)

    Lung cancer risk in painters: results from the SYNERGY pooled case-control study consortium

    Get PDF
    National audienceObjectives We evaluated the risk of lung cancer associated with ever working as a painter, duration of employment and type of painter by histological subtype as well as joint effects with smoking, within the SYNERGY project. Methods Data were pooled from 16 participating case-control studies conducted internationally. Detailed individual occupational and smoking histories were available for 19 369 lung cancer cases (684 ever employed as painters) and 23 674 age-matched and sex-matched controls (532 painters). Multivariable unconditional logistic regression models were adjusted for age, sex, centre, cigarette pack-years, time-since-smoking cessation and lifetime work in other jobs that entailed exposure to lung carcinogens. Results Ever having worked as a painter was associated with an increased risk of lung cancer in men (OR 1.30; 95% CI 1.13 to 1.50). The association was strongest for construction and repair painters and the risk was elevated for all histological subtypes, although more evident for small cell and squamous cell lung cancer than for adenocarcinoma and large cell carcinoma. There was evidence of interaction on the additive scale between smoking and employment as a painter (relative excess risk due to interaction >0). Conclusions Our results by type/industry of painter may aid future identification of causative agents or exposure scenarios to develop evidence-based practices for reducing harmful exposures in painters
    corecore