16,720 research outputs found

    5-dimensional contact SO(3)-manifolds and Dehn twists

    Full text link
    In this paper the 5-dimensional contact SO(3)-manifolds are classified up to equivariant contactomorphisms. The construction of such manifolds with singular orbits requires the use of generalized Dehn twists. We show as an application that all simply connected 5-manifoldswith singular orbits are realized by a Brieskorn manifold with exponents (k,2,2,2). The standard contact structure on such a manifold gives right-handed Dehn twists, and a second contact structure defined in the article gives left-handed twists.Comment: 16 pages, 1 figure; simplification of arguments by restricting classification to coorientation preserving contactomorphism

    Fractional Langevin equation

    Full text link
    We investigate fractional Brownian motion with a microscopic random-matrix model and introduce a fractional Langevin equation. We use the latter to study both sub- and superdiffusion of a free particle coupled to a fractal heat bath. We further compare fractional Brownian motion with the fractal time process. The respective mean-square displacements of these two forms of anomalous diffusion exhibit the same power-law behavior. Here we show that their lowest moments are actually all identical, except the second moment of the velocity. This provides a simple criterion which enables to distinguish these two non-Markovian processes.Comment: 4 page

    Dielectronic Resonance Method for Measuring Isotope Shifts

    Full text link
    Longstanding problems in the comparison of very accurate hyperfine-shift measurements to theory were partly overcome by precise measurements on few-electron highly-charged ions. Still the agreement between theory and experiment is unsatisfactory. In this paper, we present a radically new way of precisely measuring hyperfine shifts, and demonstrate its effectiveness in the case of the hyperfine shift of 4s_1/24s\_{1/2} and 4p_1/24p\_{1/2} in 207Pb53+^{207}\mathrm{Pb}^{53+}. It is based on the precise detection of dielectronic resonances that occur in electron-ion recombination at very low energy. This allows us to determine the hyperfine constant to around 0.6 meV accuracy which is on the order of 10%

    A nonlinear drift which leads to κ\kappa-generalized distributions

    Full text link
    We consider a system described by a Fokker-Planck equation with a new type of momentum-dependent drift coefficient which asymptotically decreases as 1/p-1/p for a large momentum pp. It is shown that the steady-state of this system is a κ\kappa-generalized Gaussian distribution, which is a non-Gaussian distribution with a power-law tail.Comment: Submitted to EPJB. 8 pages, 2 figures, dedicated to the proceedings of APFA

    Starburst-driven Starbursts in the Heart of Ultraluminous Infrared Galaxies

    Get PDF
    There is increasing evidence for the presence of blue super star clusters in the central regions of ultraluminous infrared galaxies like Arp 220. Ultraluminous galaxies are thought to be triggered by galaxy mergers, and it has often been argued that these super star clusters may form during violent collisions between gas clouds in the final phase of the mergers. We now investigate another set of models which differ from previous ones in that the formation of the super star clusters is linked directly to the very intense starburst occurring at the very center of the galaxy. Firstly we show that a scenario in which the super star clusters form in material compressed by shock waves originating from the central starburst is implausible because the objects so produced are much smaller than the observed star clusters in Arp 220. We then investigate a scenario (based on the Shlosman-Noguchi model) in which the infalling dense gas disk is unstable gravitationally and collapses to form massive gaseous clumps. Since these clumps are exposed to the external high pressure driven by the superwind (a blast wave driven by a collective effect of a large number of supernovae in the very core of the galaxy), they can collapse and then massive star formation may be induced in them. The objects produced in this kind of collapse have properties consistent with those of the observed super star clusters in the center of Arp 220.Comment: 13 pages, 1 figure, ApJ (Letters) in pres

    Curie-Weiss model of the quantum measurement process

    Get PDF
    A hamiltonian model is solved, which satisfies all requirements for a realistic ideal quantum measurement. The system S is a spin-\half, whose zz-component is measured through coupling with an apparatus A=M+B, consisting of a magnet \RM formed by a set of N1N\gg 1 spins with quartic infinite-range Ising interactions, and a phonon bath \RB at temperature TT. Initially A is in a metastable paramagnetic phase. The process involves several time-scales. Without being much affected, A first acts on S, whose state collapses in a very brief time. The mechanism differs from the usual decoherence. Soon after its irreversibility is achieved. Finally the field induced by S on M, which may take two opposite values with probabilities given by Born's rule, drives A into its up or down ferromagnetic phase. The overall final state involves the expected correlations between the result registered in M and the state of S. The measurement is thus accounted for by standard quantum statistical mechanics and its specific features arise from the macroscopic size of the apparatus.Comment: 5 pages Revte

    The PEP Survey: Infrared Properties of Radio-Selected AGN

    Full text link
    By exploiting the VLA-COSMOS and the Herschel-PEP surveys, we investigate the Far Infrared (FIR) properties of radio-selected AGN. To this purpose, from VLA-COSMOS we considered the 1537, F[1.4 GHz]>0.06 mJy sources with a reliable redshift estimate, and sub-divided them into star-forming galaxies and AGN solely on the basis of their radio luminosity. The AGN sample is complete with respect to radio selection at all z<~3.5. 832 radio sources have a counterpart in the PEP catalogue. 175 are AGN. Their redshift distribution closely resembles that of the total radio-selected AGN population, and exhibits two marked peaks at z~0.9 and z~2.5. We find that the probability for a radio-selected AGN to be detected at FIR wavelengths is both a function of radio power and redshift, whereby powerful sources are more likely to be FIR emitters at earlier epochs. This is due to two distinct effects: 1) at all radio luminosities, FIR activity monotonically increases with look-back time and 2) radio activity of AGN origin is increasingly less effective at inhibiting FIR emission. Radio-selected AGN with FIR emission are preferentially located in galaxies which are smaller than those hosting FIR-inactive sources. Furthermore, at all z<~2, there seems to be a preferential (stellar) mass scale M ~[10^{10}-10^{11}] Msun which maximizes the chances for FIR emission. We find such FIR (and MIR) emission to be due to processes indistinguishable from those which power star-forming galaxies. It follows that radio emission in at least 35% of the entire AGN population is the sum of two contributions: AGN accretion and star-forming processes within the host galaxy.Comment: 13 pages, 14 figures, to appear in MNRA

    Get my pizza right: Repairing missing is-a relations in ALC ontologies (extended version)

    Full text link
    With the increased use of ontologies in semantically-enabled applications, the issue of debugging defects in ontologies has become increasingly important. These defects can lead to wrong or incomplete results for the applications. Debugging consists of the phases of detection and repairing. In this paper we focus on the repairing phase of a particular kind of defects, i.e. the missing relations in the is-a hierarchy. Previous work has dealt with the case of taxonomies. In this work we extend the scope to deal with ALC ontologies that can be represented using acyclic terminologies. We present algorithms and discuss a system
    corecore