9,793 research outputs found

    Single ion heat engine with maximum efficiency at maximum power

    Full text link
    We propose an experimental scheme to realize a nano heat engine with a single ion. An Otto cycle may be implemented by confining the ion in a linear Paul trap with tapered geometry and coupling it to engineered laser reservoirs. The quantum efficiency at maximum power is analytically determined in various regimes. Moreover, Monte Carlo simulations of the engine are performed that demonstrate its feasibility and its ability to operate at maximum efficiency of 30% under realistic conditions.Comment: 5 pages, 3 figure

    The [CII] 158 um Line Deficit in Ultraluminous Infrared Galaxies Revisited

    Full text link
    We present a study of the [CII] 157.74 um fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (L_IR>10^12 Lsun; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [CII] line relative to the far-IR dust continuum emission found in our initial report (Luhman et al. 1998), but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4/5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([CII], [OI] 63 and 145 um, and FIR continuum emission), which suggests that a high UV flux G_o incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [CI] (1-0), and 6.2 um polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G_o/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [CII] deficiency. Here, unusually high G_o and/or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [CII] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [CII] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.Comment: to be published in The Astrophysical Journal, 58 page

    Latest results from the EU project AVATAR: aerodynamic modelling of 10 MW wind turbines

    Get PDF
    This paper presents the most recent results from the EU project AVATAR in which aerodynamic models are improved and validated for wind turbines on a scale of 10 MW and more. Measurements on a DU 00-W-212 airfoil are presented which have been taken in the pressurized DNW-HDG wind tunnel up to a Reynolds number of 15 Million. These measurements are compared with measurements in the LM wind tunnel for Reynolds numbers of 3 and 6 Million and with calculational results. In the analysis of results special attention is paid to high Reynolds numbers effects. CFD calculations on airfoil performance showed an unexpected large scatter which eventually was reduced by paying even more attention to grid independency and domain size in relation to grid topology. Moreover calculations are presented on flow devices (leading and trailing edge flaps and vortex generators). Finally results are shown between results from 3D rotor models where a comparison is made between results from vortex wake methods and BEM methods at yawed conditions

    First principles study of local electronic and magnetic properties in pure and electron-doped Nd2_2CuO4_4

    Full text link
    The local electronic structure of Nd2CuO4 is determined from ab-initio cluster calculations in the framework of density functional theory. Spin-polarized calculations with different multiplicities enable a detailed study of the charge and spin density distributions, using clusters that comprise up to 13 copper atoms in the CuO2plane. Electron doping is simulated by two different approaches and the resulting changes in the local charge distribution are studied in detail and compared to the corresponding changes in hole doped La2CuO4. The electric field gradient (EFG) at the copper nucleus is investigated in detail and good agreement is found with experimental values. In particular the drastic reduction of the main component of the EFG in the electron-doped material with respect to LaCuO4 is explained by a reduction of the occupancy of the 3d3z^2-r^2 atomic orbital. Furthermore, the chemical shieldings at the copper nucleus are determined and are compared to results obtained from NMR measurements. The magnetic hyperfine coupling constants are determined from the spin density distribution

    High resolution mid-infrared spectroscopy of ultraluminous infrared galaxies

    Get PDF
    (Abridged) We present R~600, 10-37um spectra of 53 ULIRGs at z<0.32, taken using the IRS on board Spitzer. All of the spectra show fine structure emission lines of Ne, O, S, Si and Ar, as well as molecular Hydrogen lines. Some ULIRGs also show emission lines of Cl, Fe, P, and atomic Hydrogen, and/or absorption features from C_2H_2, HCN, and OH. We employ diagnostics based on the fine-structure lines, as well as the EWs and luminosities of PAH features and the strength of the 9.7um silicate absorption feature (S_sil), to explore the power source behind the infrared emission in ULIRGs. We show that the IR emission from the majority of ULIRGs is powered mostly by star formation, with only ~20% of ULIRGs hosting an AGN with a comparable or greater IR luminosity than the starburst. The detection of the 14.32um [NeV] line in just under half the sample however implies that an AGN contributes significantly to the mid-IR flux in ~42% of ULIRGs. The emission line ratios, luminosities and PAH EWs are consistent with the starbursts and AGN in ULIRGs being more extincted, and for the starbursts more compact, versions of those in lower luminosity systems. The excitations and electron densities in the NLRs of ULIRGs appear comparable to those of lower luminosity starbursts, though there is evidence that the NLR gas in ULIRGs is more dense. We show that the combined luminosity of the 12.81um [NeII] and 15.56um [NeIII] lines correlates with both IR luminosity and the luminosity of the 6.2 micron and 11.2 micron PAH features in ULIRGs, and use this to derive a calibration between PAH luminosity and star formation rate. Finally, we show that ULIRGs with 0.8 < S_sil < 2.4 are likely to be powered mainly by star formation, but that ULIRGs with S_sil < 0.8, and possibly those with S_sil > 2.4, contain an IR-luminous AGN.Comment: 62 pages in preprint format, 4 tables, 23 figures. ApJ accepte

    Quantum measurements without macroscopic superpositions

    Full text link
    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that each eigenvalue of the measured object observable is tied up with a specific pointer deflection. Different pointer positions mutually decohere under the influence of a bath. Object-pointer entanglement and decoherence of distinct pointer readouts proceed simultaneously. Mixtures of macroscopically distinct object-pointer states may then arise without intervening macroscopic superpositions. Initially, object and apparatus are statistically independent while the latter has pointer and bath correlated according to a metastable local thermal equilibrium. We obtain explicit results for the object-pointer dynamics with temporal coherence decay in general neither exponential nor Gaussian. The decoherence time does not depend on details of the pointer-bath coupling if it is smaller than the bath correlation time, whereas in the opposite Markov regime the decay depends strongly on whether that coupling is Ohmic or super-Ohmic.Comment: 50 pages, 5 figures, changed conten

    Decomposing Dusty Galaxies. I. Multi-Component Spectral Energy Distribution Fitting

    Get PDF
    We present a new multi-component spectral energy distribution (SED) decomposition method and use it to analyze the ultraviolet to millimeter wavelength SEDs of a sample of dusty infrared-luminous galaxies. SEDs are constructed from spectroscopic and photometric data obtained with the Spitzer Space Telescope, in conjunction with photometry from the literature. Each SED is decomposed into emission from populations of stars, an AGN accretion disk, PAHs, atomic and molecular lines, and distributions of graphite and silicate grains. Decompositions of the SEDs of the template starburst galaxies NGC7714 and NGC2623 and the template AGNs PG0804+761 and Mrk463 provide baseline properties to aid in quantifying the strength of star-formation and accretion in the composite systems NGC6240 and Mrk1014. We find that obscured radiation from stars is capable of powering the total dust emission from NGC6240, although we cannot rule out a contribution from a deeply embedded AGN visible only in X-rays. The decomposition of Mrk1014 is consistent with ~65% of its power emerging from an AGN and ~35% from star-formation. We suggest that many of the variations in our template starburst SEDs may be explained in terms of the different mean optical depths through the clouds of dust surrounding the young stars within each galaxy. Prompted by the divergent far-IR properties of our template AGNs, we suggest that variations in the relative orientation of their AGN accretion disks with respect to the disks of the galaxies hosting them may result in different amounts of AGN-heated cold dust emission emerging from their host galaxies. We estimate that 30-50% of the far-IR and PAH emission from Mrk1014 may originate from such AGN-heated material in its host galaxy disk.Comment: 27 pages, 12 figures. Accepted for publication in the Ap

    Ice features in the mid-IR spectra of galactic nuclei

    Get PDF
    Mid infrared spectra provide a powerful probe of the conditions in dusty galactic nuclei. They variously contain emission features associated with star forming regions and absorptions by circumnuclear silicate dust plus ices in cold molecular cloud material. Here we report the detection of 6-8um water ice absorption in 18 galaxies observed by ISO. While the mid-IR spectra of some of these galaxies show a strong resemblance to the heavily absorbed spectrum of NGC 4418, other galaxies in this sample also show weak to strong PAH emission. The 18 ice galaxies are part of a sample of 103 galaxies with good S/N mid-IR ISO spectra. Based on our sample we find that ice is present in most of the ULIRGs, whereas it is weak or absent in the large majority of Seyferts and starburst galaxies. This result is consistent with the presence of larger quantities of molecular material in ULIRGs as opposed to other galaxy types. Like NGC 4418, several of our ice galaxy spectra show a maximum near 8um that is not or only partly due to PAH emission. While this affects only a small part of the galaxy population studied by ISO, it stresses the need for high S/N data and refined diagnostic methods, to properly discriminate spectra dominated by PAH emission and spectra dominated by heavy obscuration. The spectral variation from PAH emission to absorbed continuum emission near 8um shows strong similarities with Galactic star forming clouds. This leads us to believe that our classification of ice galaxy spectra might reflect an evolutionary sequence from strongly obscured beginnings of star formation (and AGN activity) to a less enshrouded stage of advanced star formation (and AGN activity), as the PAHs get stronger and the broad 8um feature weakens.Comment: 22 pages, 15 figures, Astronomy & Astrophysics, accepte

    The antikaon nuclear potential in hot and dense matter

    Get PDF
    The antikaon optical potential in hot and dense nuclear matter is studied within the framework of a coupled-channel self-consistent calculation taking, as bare meson-baryon interaction, the meson-exchange potential of the J\"ulich group. Typical conditions found in heavy-ion collisions at GSI are explored. As in the case of zero temperature, the angular momentum components larger than L=0 contribute significantly to the finite temperature antikaon optical potential at finite momentum. It is found that the particular treatment of the medium effects has a strong influence on the behavior of the antikaon potential with temperature. Our self-consistent model, in which antikaons and pions are dressed in the medium, gives a moderately temperature dependent antikaon potential which remains attractive at GSI temperatures, contrary to what one finds if only nuclear Pauli blocking effects are included.Comment: 30 pages, 8 figures, references added. Accepted for publication in PR

    Measuring the Lyapunov exponent using quantum mechanics

    Full text link
    We study the time evolution of two wave packets prepared at the same initial state, but evolving under slightly different Hamiltonians. For chaotic systems, we determine the circumstances that lead to an exponential decay with time of the wave packet overlap function. We show that for sufficiently weak perturbations, the exponential decay follows a Fermi golden rule, while by making the difference between the two Hamiltonians larger, the characteristic exponential decay time becomes the Lyapunov exponent of the classical system. We illustrate our theoretical findings by investigating numerically the overlap decay function of a two-dimensional dynamical system.Comment: 9 pages, 6 figure
    corecore