328 research outputs found

    Depolarization-initiated endogenous cannabinoid release and underlying retrograde neurotransmission in interneurons of amygdala

    Get PDF
    The depolarization is also important for the short-term synaptic plasticity, known as depolarization-induced suppression of excitation (DSE). The two major types of neurons and their synapses in the lateral nucleus of amygdala (LA) are prone to plasticity. However, DSE in interneurons has not been reported in amygdala in general and in LA in particular. Therefore, we conducted the patch-clamp experiments with LA interneurons. These neurons were identified by lack of adaptation in firing rate of action potentials. In this study, we show for the first time a transient suppression of neurotransmission at synapses both within the local network and between cortical inputs and interneurons of the LA. The retrograde neurotransmission from GABAergic interneurons were comparable with that of glutamatergic pyramidal cells. That is the axonal terminals of cortical inputs do not posses selectivity toward two neuronal subtypes. However, the DSE of both types of neurons involve an increase in intracellular Ca[superscript 2+] and the release of endogenous cannabinoids (eCB) and activation of presynaptic CB1 receptors. The magnitude of DSE was significantly higher in interneurons compared with pyramidal cells, though developed with some latency

    The relationship between common data-based indicators and the welfare of Swiss dairy herds.

    Get PDF
    The assessment of dairy cow welfare has become increasingly important in recent years. Welfare assessments that use animal-based indicators, which are considered the most direct indicators, are time consuming and therefore not feasible for assessments on a large number of farms. One approach to reducing this effort is the use of data-based indicators (DBIs) calculated from routine herd data. The aim of this study was to explore the relationship between common DBIs and the welfare of 35 dairy herds to evaluate the feasibility of a data-based welfare prediction method. For this purpose, the WelfareQuality® (WQ) protocol was used to assess the welfare of dairy cows on 35 Swiss farms, for each of which 10 commonly used DBIs were calculated from herd data. Spearman's rank correlations were used to investigate the relationship between DBIs and WQ criteria and measurements. The study found only a few statistically weak associations between DBIs and animal welfare, with no associations for measurements or criteria of resting comfort and appropriate behavior. Thus, the multidimensional welfare definition is insufficiently covered, and the present publication does not support the approach of a purely data-based prediction of dairy welfare status at the farm level. Instead, the regular calculation of DBIs that are indicative of isolated animal welfare problems or metrics of animal health could allow monitoring of these specific areas of animal welfare

    Circuit Specific Functions of Cannabinoid CB1 Receptor in the Balance of Investigatory Drive and Exploration

    Get PDF
    Well balanced novelty seeking and exploration are fundamental behaviours for survival and are found to be dysfunctional in several psychiatric disorders. Recent studies suggest that the endocannabinoid (eCB) system is an important control system for investigatory drive. Pharmacological treatment of rodents with cannabinergic drugs results in altered social and object investigation. Interestingly, contradictory results have been obtained, depending on the treatment, drug concentration and experimental conditions. The cannabinoid type 1 (CB1) receptor, a central component of the eCB system, is predominantly found at the synapses of two opposing neuronal populations, i.e. on inhibitory GABAergic and excitatory glutamatergic neurons. In the present study, using different transgenic mouse lines, we aimed at investigating the impact of CB1 receptor inactivation in glutamatergic or GABAergic neurons on investigatory behaviour. We evaluated animate (interaction partner) and inanimate (object) exploratory behaviour in three different paradigms. We show that exploration was increased when CB1 receptor was deleted from cortical and striatal GABAergic neurons. No effect was observed when CB1 receptor was deleted specifically from dopamine receptor D1-expressing striatal GABAergic medium spiny neurons. In contrast, deletion of CB1 receptor from cortical glutamatergic neurons resulted in a decreased exploration. Thus, our results indicate that exploratory behaviour is accurately balanced in both, the social and non-social context, by the eCB system via CB1 receptor activation on cortical glutamatergic and GABAergic neurons. In addition, the results could explain the contradictory findings of previous pharmacological studies and could further suggest a possibility to readjust an imbalance in exploratory behaviour observed in psychiatric disorders

    Oleoylethanolamide restores alcohol-induced inhibition of neuronal proliferation and microglial activity in striatum

    Get PDF
    Previous findings demonstrate a homeostatic role for oleoylethanolamide (OEA) signaling in the ethanol-related neuroinflammation and behavior. However, extensive research is still required in order to unveil the effects of OEA on a number of neurobiological functions such as adult neurogenesis, cell survival and resident neuroimmunity that become notably altered by alcohol. Daily consumption of ethanol (10%) for 2 weeks (6.3& #x202F;± 1.1 g/kg/day during last 5 days) caused hypolocomotor activity in rats. This effect appears to rely on central signaling mechanisms given that alcohol increased the OEA levels, the gene expression of OEA-synthesizing enzyme Nape-pld and the number of PPARα-immunoreactive neurons in the striatum. Ethanol-related neurobiological alterations such as a reduction in the number of microglial cells expressing iNOS (a cytokine-inducible immune defense) and in adult neural stem/progenitor cell (NSPC) proliferation (phospho-H3 and BrdU) and maturation (BrdU/β3-tubulin), as well as an increase in damage cell activity (FosB) and apoptosis (cleaved caspase 3) were also observed in the rat striatum. Pharmacological administration of OEA (10 mg/kg) for 5 days during ethanol exposure exacerbated ethanol-induced hypolocomotion and cell apoptosis in the striatum. Interestingly, OEA abrogated the impaired effects of ethanol on PPARα-positive cell population and NSPC proliferation and maturation. OEA also decreased astrocyte-related vimentin immunoreactivity and increased microglial cell population (Iba-1, iNOS) in the striatum. These results suggest that OEA-PPARα signaling modulates glial activation, cell apoptosis and NSPC proliferation and maturation in response to striatal-specific neurobiological alterations induced by prolonged ethanol intake in rats.This work was supported by RETICS Red de Trastornos Adictivos, Instituto de Salud Carlos III (ISCIII), Ministerio de Economía y Competitividad and European Regional Development Funds-European Union (ERDF-EU) (RD16/0017/0001); ISCIII, MINECO, ERDF-EU (JS: PI16/01374; FRF: PI16/01698; FJP: PI16/01953; AS: PI17/02026); Ministerio de Sanidad, Servicios Sociales e Igualdad and Plan Nacional sobre Drogas (JS: PNSD2015/047; AS: PND2017/043); Consejería de Economía, Innovación y Ciencia, Junta de Andalucía, ERDF-EU (FRF: CTS-8221); Consejería de Salud, Junta de Andalucía, ERDF-EU (FRF: SAS111224); German Research Foundation DFG (BL: FOR926, project CP1). FJP (CP14/00212) and AS (CP14/00173) are recipients of a research contract from “Miguel Servet” Program of ISCIII, ERDF-EU. JS holds a “Miguel Servet II” research contract from the National System of Health, ISCIII, ERDF-EU, FIMABIS (CPII17/00024). PR holds a “Sara Borrel” research contract from ISCIII, ERDF-EU (CD16/00067)

    Human FMO2-based microbial whole-cell catalysts for drug metabolite synthesis

    Get PDF
    Background: Getting access to authentic human drug metabolites is an important issue during the drug discovery and development process. Employing recombinant microorganisms as whole-cell biocatalysts constitutes an elegant alternative to organic synthesis to produce these compounds. The present work aimed for the generation of an efficient whole-cell catalyst based on the flavin monooxygenase isoform 2 (FMO2), which is part of the human phase I metabolism. Results: We show for the first time the functional expression of human FMO2 in E. coli. Truncations of the C-terminal membrane anchor region did not result in soluble FMO2 protein, but had a significant effect on levels of recombinant protein. The FMO2 biocatalysts were employed for substrate screening purposes, revealing trifluoperazine and propranolol as FMO2 substrates. Biomass cultivation on the 100 L scale afforded active catalyst for biotransformations on preparative scale. The whole-cell conversion of trifluoperazine resulted in perfectly selective oxidation to 48 mg (46% yield) of the corresponding N1-oxide with a purity >98%. Conclusions: The generated FMO2 whole-cell catalysts are not only useful as screening tool for human metabolites of drug molecules but more importantly also for their chemo- and regioselective preparation on the multi-milligram scale

    Development of a species-specific RNA polymerase I-based shRNA expression vector

    Get PDF
    RNA interference (RNAi) can be induced in vitro either by application of synthetic short interfering RNAs (siRNAs), or by intracellular expression of siRNAs or short hairpin RNAs (shRNAs) from transfected vectors. The most widely used promoters for siRNA/shRNA expression are based on polymerase III (Pol III)-dependent transcription. We developed an alternative vector for siRNA/shRNA expression, using a mouse RNA polymerase I (Pol I) promoter. Pol I-dependent transcription serves in cells for production of ribosomal RNA (rRNA), and as such, is ubiquitously and stably active in different cell types. As Pol I-dependent transcription is highly species-specific, Pol I-based system provides an important biosafety advantage with respect to silencing of genes with unknown functions

    Subsynaptic Distribution, Lipid Raft Targeting and G Protein-Dependent Signalling of the Type 1 Cannabinoid Receptor in Synaptosomes from the Mouse Hippocampus and Frontal Cortex

    Get PDF
    Numerous studies have investigated the roles of the type 1 cannabinoid receptor (CB1) in glutamatergic and GABAergic neurons. Here, we used the cell-type-specific CB1 rescue model in mice to gain insight into the organizational principles of plasma membrane targeting and Gαi/o protein signalling of the CB1 receptor at excitatory and inhibitory terminals of the frontal cortex and hippocampus. By applying biochemical fractionation techniques and Western blot analyses to synaptosomal membranes, we explored the subsynaptic distribution (pre-, post-, and extra-synaptic) and CB1 receptor compartmentalization into lipid and non-lipid raft plasma membrane microdomains and the signalling properties. These data infer that the plasma membrane partitioning of the CB1 receptor and its functional coupling to Gαi/o proteins are not biased towards the cell type of CB1 receptor rescue. The extent of the canonical Gαi/o protein-dependent CB1 receptor signalling correlated with the abundance of CB1 receptor in the respective cell type (glutamatergic versus GABAergic neurons) both in frontal cortical and hippocampal synaptosomes. In summary, our results provide an updated view of the functional coupling of the CB1 receptor to Gαi/o proteins at excitatory and inhibitory terminals and substantiate the utility of the CB1 rescue model in studying endocannabinoid physiology at the subcellular level.This research was funded by the Basque Government (IT1230-19), MINECO, Spanish Ministry of Science, Innovation and Universities (CTQ2017-85686-R)

    The F238L Point Mutation in the Cannabinoid Type 1 Receptor Enhances Basal Endocytosis via Lipid Rafts

    Get PDF
    Defining functional domains and amino acid residues in G protein coupled receptors (GPCRs) represent an important way to improve rational drug design for this major class of drug targets. The cannabinoid type 1 (CB1) receptor is one of the most abundant GPCRs in the central nervous system and is involved in many physiological and pathophysiological processes. Interestingly, cannabinoid type 1 receptor with a phenylalanine 238 to leucine mutation (CB1F238L) has been already linked to a number of both in vitro and in vivo alterations. While CB1F238L causes significantly reduced presynaptic neurotransmitter release at the cellular level, behaviorally this mutation induces increased risk taking, social play behavior and reward sensitivity in rats. However, the molecular mechanisms underlying these changes are not fully understood. In this study, we tested whether the F238L mutation affects trafficking and axonal/presynaptic polarization of the CB1 receptor in vitro. Steady state or ligand modulated surface expression and lipid raft association was analyzed in human embryonic kidney 293 (HEK293) cells stably expressing either wild-type cannabinoid type 1 receptor (CB1wt) or CB1F238L receptor. Axonal/presynaptic polarization of the CB1F238L receptor was assessed in transfected primary hippocampal neurons. We show that in vitro the CB1F238L receptor displays increased association with lipid rafts, which coincides with increased lipid raft mediated constitutive endocytosis, leading to a reduction in steady state surface expression of the CB1F238L receptor. Furthermore, the CB1F238L receptor showed increased axonal polarization in primary hippocampal neurons. These data demonstrate that endocytosis of the CB1 receptor is an important mediator of axonal/presynaptic polarization and that phenylalanine 238 plays a key role in CB1 receptor trafficking and axonal polarization

    Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons

    Get PDF
    The CB1 cannabinoid receptor, the main target of Δ9 -tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling

    Increased endocannabinoid levels reduce the development of precancerous lesions in the mouse colon

    Get PDF
    Colorectal cancer is an increasingly important cause of death in Western countries. Endocannabinoids inhibit colorectal carcinoma cell proliferation in vitro. In this paper, we investigated the involvement of endocannabinoids on the formation of aberrant crypt foci (ACF, earliest preneoplastic lesions) in the colon mouse in vivo. ACF were induced by azoxymethane (AOM); fatty acid amide hydrolase (FAAH) and cannabinoid receptor messenger ribonucleic acid (mRNA) levels were analyzed by the quantitative reverse transcription polymerase chain reaction (RT-PCR); endocannabinoid levels were measured by liquid chromatography–mass spectrometry; caspase-3 and caspase-9 expressions were measured by Western blot analysis. Colonic ACF formation after AOM administration was associated with increased levels of 2-arachidonoylglycerol (with no changes in FAAH and cannabinoid receptor mRNA levels) and reduction in cleaved caspase-3 and caspase-9 expression. The FAAH inhibitor N-arachidonoylserotonin increased colon endocannabinoid levels, reduced ACF formation, and partially normalized cleaved caspase-3 (but not caspase-9) expression. Notably, N-arachidonoylserotonin completely prevented the formation of ACF with four or more crypts, which have been show to be best correlated with final tumor incidence. The effect of N-arachidonoylserotonin on ACF formation was mimicked by the cannabinoid receptor agonist HU-210. No differences in ACF formation were observed between CB1 receptor-deficient and wild-type mice. It is concluded that pharmacological enhancement of endocannabinoid levels (through inhibition of endocannabinoid hydrolysis) reduces the development of precancerous lesions in the mouse colon. The protective effect appears to involve caspase-3 (but not caspase-9) activation
    corecore