665 research outputs found
Low-dimensional hybrid perovskites containing an organic cation with an extended conjugated system : tuning the excitonic absorption features
Low-dimensional hybrid perovskites are receiving increased attention. One of the advantages of the low-dimensional hybrids over their 3D counterparts is their greater structural flexibility towards the incorporation of bigger, more complex, organic cations. In this communication, we introduce a pyrene derivative as an organic cation containing an extended pi-system for use in a variety of low-dimensional hybrids. We show that materials with different excitonic absorption features can be obtained by tuning the iodide/lead ratio in the precursor solutions, using the same pyrene cation. In this way, hybrids with optical characteristics corresponding to 2D, 1D and 0D hybrid perovskites are obtained. The formation and thermal stability of the different hybrids is analysed and compared
Effect of temperature and illumination on the electrical characteristics of polymer-fullerene bulk-heterojunction solar cells
The current-voltage characteristics of ITO/PEDOT:PSS/OC1C10-PPV:PCBM/Al solar cells were measured in the temperature range 125-320 K under variable illumination, between 0.03 and 100 mW cm(-2) (white light), with the aim of determining the efficiency-limiting mechanism(s) in these devices, and the temperature and/or illumination range(s) in which these devices demonstrate optimal performance. (ITO: indium tin oxide; PEDOT:PSS: poly(styrene sulfonate)-doped poly(ethylene dioxythiophene); OC1C10-PPV: poly[2-methoxy-5-(3,7-dimethyl octyloxy)-1,4-phenylene vinylene]; PCBM: phenyl-C-61 butyric acid methyl ester.) The short-circuit current density and the fill factor grow monotonically with temperature until 320 K. This is indicative of a thermally activated transport of photogenerated charge carriers, influenced by recombination with shallow traps. A gradual increase of the open-circuit voltage to 0.91 V was observed upon cooling the devices down to 125 K. This fits the picture in which the open-circuit voltage is not limited by the work-function difference of electrode materials used. The overall effect of temperature on solar-cell parameters results in a positive temperature coefficient of the power conversion efficiency, which is 1.9% at T = 320 K and 100 mW cm(-2) (2.5% at 0.7 mW cm(-2)). The almost-linear variation of the short-circuit current density with light intensity confirms that the internal recombination losses are predominantly of monomolecular type under short-circuit conditions. We present evidence that the efficiency of this type of solar cell is limited by a light-dependent shunt resistance. Furthermore, the electronic transport properties of the absorber materials, e.g., low effective charge-carrier mobility with a strong temperature dependence, limit the photogenerated current due to a high series resistance, therefore the active layer thickness must be kept low, which results in low absorption for this particular composite absorber
ABA triblock copolymers: from controlled synthesis to controlled function
The ABA amphiphilic block copolymers, poly(hydroxyethyl methacrylate-hlock-methylphenylsilane-block-hydroxyethyl methacrylate) (PHEMA-PMPS-PHEMA) and poly[oligo(ethylene glycol) methyl ether methacrylate-block-methylphenylsilane-block-oligo(ethylene glycol). methyl ether methacrylate] (POEGMA-PMPS-POEGMA) were successfully synthesised via atom transfer radical polymerisation (ATRP). Macroinitiators suitable for the ATRP of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate were synthesised from the condensation reaction of alpha,omega-dihalopolymethylphenylsilane and 2'-hydroxyethyl 2-bromo-2-methylpropanoate. The copolymers were characterised using H-1 NMR and C-13 NMR spectroscopy and molecular weight characteristics were determined using size exclusion chromatography and H-1 NMR. The aggregation behaviour of some of the copolymers in water was studied using transmission and scanning electron microscopy and dynamic light scattering. These revealed the prevalent aggregate species to be micelles. Larger aggregates of 300-1000 nm diameter were also observed. The UV induced degradation of the aggregates was studied by UV-Vis spectroscopy. The thermal behaviour of selected copolymers was studied by differential scanning calorimetry and microphase separation of the two components was demonstrated
Lutsen Town Center Plan - A Guide for Public & Private Actions & Investments: May 2004 Final Draft
This preliminary planning document focuses on economic development for the town of Lutsen. There is little mention of water resources except for the following excerpts: “Highway 61 corridor: The essence of Lutsen focuses on the wild landscape and rugged shore. Retaining this identify will require techniques including screening and development setbacks so as to retain the undeveloped look along the entire stretch of Highway 61 in Lutsen. To further enhance this identity, landscape treatments such as planting lupine and maples can be undertaken. Besides augmenting the naturalness of the corridor these actions will further enhance the village atmosphere of the Town Center.
Tin-lead-metal halide perovskite solar cells with enhanced crystallinity and efficiency by addition of fluorinated long organic cation
Highly performing mixed Sn/Pb-metal halide perovskite solar cells (PSCs) are among the most promising options to reduce Pb content in perovskite devices and enable, owing to their reduced bandgap, the fabrication of all-perovskite tandem solar cells. Whereas pure-Pb perovskite devices exhibit efficiency up to 25.5%, alongside a high open-circuit voltage (≈1.2 V), Sn-Pb PSCs still show lower performances (22.2%) due to higher open-circuit voltage losses. Here, we introduced 2,3,4,5,6-pentafluorophenethylammonium cations in a perovskite active layer of composition (FASnI3)0.5(MAPbI3)0.5 to obtain highly oriented films with improved thermal stability. The treated films exhibit merged grains with no evidence of 2D structures, which could help to reduce the trap state density at the surface and grain boundaries. Solar cells fabricated with the fluorinated cation added to the active layer displayed reduced trap-assisted recombination losses and lower background carrier density, which leads to enhanced open-circuit voltages with respect to the reference samples and the active layers incorporating unfluorinated phenethylammonium cations. The best device reached an efficiency of 19.13%, with an open-circuit voltage of 0.84 V, which is substantially improved with respect to the reference sample showing 17.47% efficiency and 0.77 V open-circuit voltage. More importantly, the fluorinated cations' addition is instrumental to improve the device's thermal stability; 90.3% of the solar cell initial efficiency is maintained after 90 min of thermal stress at 85 °C in a nitrogen atmosphere
An effective strategy to enhance the dielectric constant of organic semiconductors - CPDTTPD-based low bandgap polymers bearing oligo(ethylene glycol) side chains
Difluorodithieno[3,2-a:2′,3′-c]phenazine as a strong acceptor for materials displaying thermally activated delayed fluorescence or room temperature phosphorescence
A novel strong electron-acceptor unit, 9,10-difluorodithieno[3,2-a:2′,3′-c]phenazine (DTPz), is synthesized and applied in the design of two donor-acceptor type emitters displaying long-lived delayed emission. Using either 9,9-dimethyl-9,10-dihydroacridine (DMAC) or triisopropyl-substituted benzo[1,2-b:4,5-b']dithiophene (BDT-TIPS) as the donor component, push-pull type chromophores exhibiting charge-transfer emission are obtained and found to afford either thermally activated delayed fluorescence (TADF) for DMAC or room temperature phosphorescence (RTP) for BDT-TIPS
- …
