75 research outputs found

    Polymorphisms in inflammation associated genes ALOX15 and IL-6 are associated with bone properties in young women and fracture in elderly.

    Get PDF
    ALOX12 and ALOX15 encode arachidonate lipoxygenases which produce lipid metabolites involved in inflammatory processes. Metabolites generated by ALOX12 and ALOX15 can activate the expression of the potent pro-inflammatory cytokine IL-6, and produce endogenous ligands for PPARG. In this study, polymorphisms in ALOX12, ALOX15, IL6 and PPARG were investigated for association with bone properties in young and elderly Swedish women

    Comparative Sequence Analysis of the Non-Protein-Coding Mitochondrial DNA of Inbred Rat Strains

    Get PDF
    The proper function of mammalian mitochondria necessitates a coordinated expression of both nuclear and mitochondrial genes, most likely due to the co-evolution of nuclear and mitochondrial genomes. The non-protein coding regions of mitochondrial DNA (mtDNA) including the D-loop, tRNA and rRNA genes form a major component of this regulated expression unit. Here we present comparative analyses of the non-protein-coding regions from 27 Rattus norvegicus mtDNA sequences. There were two variable positions in 12S rRNA, 20 in 16S rRNA, eight within the tRNA genes and 13 in the D-loop. Only one of the three neutrality tests used demonstrated statistically significant evidence for selection in 16S rRNA and tRNA-Cys. Based on our analyses of conserved sequences, we propose that some of the variable nucleotide positions identified in 16S rRNA and tRNA-Cys, and the D-loop might be important for mitochondrial function and its regulation

    Identification of Candidate Gene Regions in the Rat by Co-Localization of QTLs for Bone Density, Size, Structure and Strength.

    Get PDF
    Susceptibility to osteoporotic fracture is influenced by genetic factors that can be dissected by whole-genome linkage analysis in experimental animal crosses. The aim of this study was to characterize quantitative trait loci (QTLs) for biomechanical and two-dimensional dual-energy X-ray absorptiometry (DXA) phenotypes in reciprocal F2 crosses between diabetic GK and normo-glycemic F344 rat strains and to identify possible co-localization with previously reported QTLs for bone size and structure. The biomechanical measurements of rat tibia included ultimate force, stiffness and work to failure while DXA was used to characterize tibial area, bone mineral content (BMC) and areal bone mineral density (aBMD). F2 progeny (108 males, 98 females) were genotyped with 192 genome-wide markers followed by sex- and reciprocal cross-separated whole-genome QTL analyses. Significant QTLs were identified on chromosome 8 (tibial area; logarithm of odds (LOD) = 4.7 and BMC; LOD = 4.1) in males and on chromosome 1 (stiffness; LOD = 5.5) in females. No QTLs showed significant sex-specific interactions. In contrast, significant cross-specific interactions were identified on chromosome 2 (aBMD; LOD = 4.7) and chromosome 6 (BMC; LOD = 4.8) for males carrying F344mtDNA, and on chromosome 15 (ultimate force; LOD = 3.9) for males carrying GKmtDNA, confirming the effect of reciprocal cross on osteoporosis-related phenotypes. By combining identified QTLs for biomechanical-, size- and qualitative phenotypes (pQCT and 3D CT) from the same population, overlapping regions were detected on chromosomes 1, 3, 4, 6, 8 and 10. These are strong candidate regions in the search for genetic risk factors for osteoporosis

    Variations in apolipoprotein D and sigma non-opioid intracellular receptor 1 genes with relation to risk, severity and outcome of ischemic stroke

    Get PDF
    Background: In experimental studies, the apolipoprotein D (APOD) and the sigma receptor type 1 (SIGMAR1) have been related to processes of brain damage, repair and plasticity. Methods: We examined blood samples from 3081 ischemic stroke (IS) patients and 1595 control subjects regarding 10 single nucleotide polymorphisms (SNPs) in the APOD (chromosomal location 3q29) and SIGMAR1 (chromosomal location 9p13) genes to find possible associations with IS risk, IS severity (NIHSS-score) and recovery after IS (modified Rankin Scale, mRS, at 90 days). Simple/multiple logistic regression and Spearman's rho were utilized for the analyses. Results: Among the SNPs analyzed, rs7659 within the APOD gene showed a possible association with stroke risk (OR = 1.12; 95% CI: 1.01-1.25; P = 0.029) and stroke severity (NIHSS >= 16) (OR = 0.70; 95% CI: 0.54-0.92; P = 0.009) when controlling for age, sex and vascular risk factors for stroke. No SNP showed an association with stroke recovery (mRS). Conclusions: We conclude that the SNP rs7659 within the APOD gene might be related to risk and severity of ischemic stroke in patients

    HTR1A a Novel Type 1 Diabetes Susceptibility Gene on Chromosome 5p13-q13

    Get PDF
    Background: We have previously performed a genome-wide linkage study in Scandinavian Type 1 diabetes (T1D) families. In the Swedish families, we detected suggestive linkage (LOD less than= 2.2) to the chromosome 5p13-q13 region. The aim of our study was to investigate the linked region in search for possible T1D susceptibility genes. Methodology/Principal Findings: Microsatellites were genotyped in the Scandinavian families to fine-map the previously linked region. Further, SNPs were genotyped in Swedish and Danish families as well as Swedish sporadic cases. In the Swedish families we detected genome-wide significant linkage to the 5-hydroxytryptamine receptor 1A (HTR1A) gene (LOD 3.98, pless than9.8x10(-6)). Markers tagging two separate genes; the ring finger protein 180 (RNF180) and HTR1A showed association to T1D in the Swedish and Danish families (pless than0.002, pless than0.001 respectively). The association was not confirmed in sporadic cases. Conditional analysis indicates that the primary association was to HTR1A. Quantitative PCR show that transcripts of both HTR1A and RNF180 are present in human islets of Langerhans. Moreover, immunohistochemical analysis confirmed the presence of the 5-HTR1A protein in isolated human islets of Langerhans as well as in sections of human pancreas. Conclusions: We have identified and confirmed the association of both HTR1A and RFN180, two genes in high linkage disequilibrium (LD) to T1D in two separate family materials. As both HTR1A and RFN180 were expressed at the mRNA level and HTR1A as protein in human islets of Langerhans, we suggest that HTR1A may affect T1D susceptibility by modulating the initial autoimmune attack or either islet regeneration, insulin release, or both

    Unconditional two-locus nonparametric linkage analysis

    No full text
    We discuss different aspects of unconditional two-locus nonparametric linkage (NPL) analysis with special emphasis on gene-gene interaction. We interpret this as identical-by-descent (IBD) sharing correlation between two disease loci both having marginal effect. We relate this to the concept of two-locus NPL score functions, the possible importance of using a composite rather than a simple null hypothesis and the corresponding calculation of statistical power. Moreover, we define several classes of score functions and give multiple suggestions on how to incorporate a composite null hypothesis into the analysis. The least favourable two-locus IBD-distribution is discussed, resulting in an upper bound of the two-locus p-value

    No evidence for linkage in Swedish multiplex T1DM families to IL12B on chromosome 5q33-34

    No full text
    Type 1 diabetes mellitus (T1DM) is an autoimmune disease in which the 0 cells in the pancreas are destroyed by the body's own immune system. IL12 plays a role in pathological situations, such as septic shock, tissue damage during inflammation, and organ-specific autoimmune diseases. In NOD mice, administration of IL12 induces T1DM and administration of IL12 antagonists prevents T1DM. Linkage and association of IL12 to T1DM have been reported previously. We are unable to replicate this linkage on chromosome 5q33-34 in 184 Swedish families. Further, we exclude a gene with lambda(s) > 1.4 from this region. Together with previously published findings, these data make IL12 an unlikely major susceptibility gene for T1DM
    • …
    corecore