6 research outputs found

    A Phylogenomic Assessment of Processes Underpinning Convergent Evolution in Open-Habitat Chats.

    Get PDF
    Insights into the processes underpinning convergent evolution advance our understanding of the contributions of ancestral, introgressed, and novel genetic variation to phenotypic evolution. Phylogenomic analyses characterizing genome-wide gene tree heterogeneity can provide first clues about the extent of ILS and of introgression and thereby into the potential of these processes or (in their absence) the need to invoke novel mutations to underpin convergent evolution. Here, we were interested in understanding the processes involved in convergent evolution in open-habitat chats (wheatears of the genus Oenanthe and their relatives). To this end, based on whole-genome resequencing data from 50 taxa of 44 species, we established the species tree, characterized gene tree heterogeneity, and investigated the footprints of ILS and introgression within the latter. The species tree corroborates the pattern of abundant convergent evolution, especially in wheatears. The high levels of gene tree heterogeneity in wheatears are explained by ILS alone only for 30% of internal branches. For multiple branches with high gene tree heterogeneity, D-statistics and phylogenetic networks identified footprints of introgression. Finally, long branches without extensive ILS between clades sporting similar phenotypes provide suggestive evidence for a role of novel mutations in the evolution of these phenotypes. Together, our results suggest that convergent evolution in open-habitat chats involved diverse processes and highlight that phenotypic diversification is often complex and best depicted as a network of interacting lineages

    An annotated chromosome-scale reference genome for Eastern black-eared wheatear (Oenanthe melanoleuca).

    Get PDF
    Pervasive convergent evolution and in part high incidences of hybridization distinguish wheatears (songbirds of the genus Oenanthe) as a versatile system to address questions at the forefront of research on the molecular bases of phenotypic and species diversification. To prepare the genomic resources for this venture, we here generated and annotated a chromosome-scale assembly of the Eastern black-eared wheatear (O. melanoleuca). This species is part of the O. hispanica-complex that is characterized by convergent evolution of plumage coloration and high rates of hybridization. The long-read-based male nuclear genome assembly comprises 1.04 Gb in 32 autosomes, the Z chromosome, and the mitogenome. The assembly is highly contiguous (contig N50: 12.6 Mb; scaffold N50: 70 Mb), with 96% of the genome assembled at chromosome level and 95.5% BUSCO completeness. The nuclear genome was annotated with 18,143 protein-coding genes and 31,333 mRNAs (annotation BUSCO completeness: 98.0%), and about 10% of the genome consists of repetitive DNA. The annotated chromosome-scale reference genome of Eastern black-eared wheatear provides a crucial resource for research into the genomics of adaptation and speciation in an intriguing group of passerines

    A phylogenomic assessment of processes underpinning convergent evolution in open-habitat chats

    Get PDF
    Insights into the processes underpinning convergent evolution advance our understanding of the contributions of ancestral, introgressed, and novel genetic variation to phenotypic evolution. Phylogenomic analyses characterizing genome-wide gene tree heterogeneity can provide first clues about the extent of ILS and of introgression and thereby into the potential of these processes or (in their absence) the need to invoke novel mutations to underpin convergent evolution. Here, we were interested in understanding the processes involved in convergent evolution in open-habitat chats (wheatears of the genus Oenanthe and their relatives). To this end, based on whole-genome resequencing data from 50 taxa of 44 species, we established the species tree, characterized gene tree heterogeneity, and investigated the footprints of ILS and introgression within the latter. The species tree corroborates the pattern of abundant convergent evolution, especially in wheatears. The high levels of gene tree heterogeneity in wheatears are explained by ILS alone only for 30% of internal branches. For multiple branches with high gene tree heterogeneity, D-statistics and phylogenetic networks identified footprints of introgression. Finally, long branches without extensive ILS between clades sporting similar phenotypes provide suggestive evidence for the role of novel mutations in the evolution of these phenotypes. Together, our results suggest that convergent evolution in open-habitat chats involved diverse processes and highlight that phenotypic diversification is often complex and best depicted as a network of interacting lineages

    Linked-read sequencing enables haplotype-resolved resequencing at population scale

    Get PDF
    The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences - including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps - are still limited by the lack of high-quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50 and 90 percent of phased sequences located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1Mb (N50/N90) at 25x coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing at population scale

    Comparative transcriptomics reveals divergent paths of chitinase evolution underlying dietary convergence in ant-eating mammals

    No full text
    Posted April 03, 2023 on bioRxiv.Ant-eating mammals represent a textbook example of convergent evolution. Among them, anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth loss, elongated skulls, protruding tongues, hypertrophied salivary glands producing large amounts of saliva, and powerful claws for ripping open ant and termite nests. However, comparative genomic analyses have shown that anteaters and pangolins differ in their chitinase gene ( CHIA ) repertoires, which potentially degrade the chitinous exoskeletons of ingested ants and termites. While the southern tamandua ( Tamandua tetradactyla ) harbors four functional CHIA paralogs ( CHIA1 - 4 ), Asian pangolins ( Manis spp.) have only one functional paralog ( CHIA5 ). Here, we performed a comparative transcriptomic analysis of salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating species and close relatives. Our results suggest that salivary glands play an important role in adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in insectivorous species. Furthermore, convergently-evolved pangolins and anteaters express different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed in all major digestive organs, whereas in the southern tamandua, all four functional paralogs are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas, and for CHIA3 and CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate that divergent molecular mechanisms underlie convergent adaptation to the ant-eating diet in pangolins and anteaters. This study highlights the role of historical contingency and molecular tinkering of the chitin-digestive enzyme toolkit in this classic example of convergent evolution

    Linked-read sequencing enables haplotype-resolved resequencing at population scale

    No full text
    The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps – are still limited by the lack of high-quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50 and 90 percent of phased sequences located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1Mb (N50/N90) at 25x coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing at population scale.Funding provided by: German Research Foundation*Crossref Funder Registry ID: Award Number: BU3456/3-1Funding provided by: Science for Life Laboratory Swedish Biodiversity Program*Crossref Funder Registry ID: Award Number: 2015-R14Funding provided by: German Research FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001659Award Number: BU3456/3-1Funding provided by: Science for Life Laboratory Swedish Biodiversity ProgramCrossref Funder Registry ID: Award Number: 2015-R1410X Genomics linked-reads (60x coverage) were assembled using the Supernova 2.1 assembler. To remove duplicate scaffolds of at least 99% identity from the pseudohaploid assembly, we ran the dedupe procedure in BBTools (https://sourceforge.net/projects/bbmap/) allowing up to 7,000 edits. This reduced the assembly to 11,030 scaffolds. We then aimed to ensure that all duplicate scaffolds were removed and retain only scaffolds whose integrity can be confirmed by the presence of syntenic regions in another songbird genome. To this end, we performed a lastz alignment against the collared flycatcher assembly version 1.5, which is the highest-quality assembly available from the Muscicapidae family. For this we used lastz 1.04 with settings M=254, K=4500, L=3000, Y=15000, C=2, T=2, and --matchcount=10000. This resulted in 295 scaffolds with unique hits in the flycatcher assembly
    corecore