408 research outputs found

    Wet season Mediterranean precipitation variability: influence of large-scale dynamics and trends

    Get PDF
    Abstract : The influence of the large-scale atmospheric circulation at several tropospheric levels on wet season precipitation over 292 sites across the Mediterranean area is assessed. A statistical downscaling model is designed with an objective methodology based on empirical orthogonal functions and canonical correlation analysis (CCA) and tested by means of cross-validation. In all 30% of the total Mediterranean October to March precipitation variability can be accounted for by the combination of four large-scale geopotential height fields and sea level pressure. The Mediterranean sea surface temperatures seem to be less relevant to explain precipitation variability at interannual time scale. It is shown that interdecadal changes in the first CCA mode are related to variations in the North Atlantic Oscillation index and responsible for comparable time scale variations of the Mediterranean precipitation throughout the twentieth century. The analysis reveals that since the mid-nineteenth century precipitation steadily increased with a maximum in the 1960s and decreased since then. The second half of the twentieth century shows a general downward trend of 2.2mm·month-1·decade-

    Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    Get PDF
    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram

    Summer heat waves over western Europe 1880-2003, their relationship to large-scale forcings and predictability

    Get PDF
    We investigate the large-scale forcing and teleconnections between atmospheric circulation (sea level pressure, SLP), sea surface temperatures (SSTs), precipitation and heat wave events over western Europe using a new dataset of 54 daily maximum temperature time series. Forty four of these time series have been homogenised at the daily timescale to ensure that the presence of inhomogeneities has been minimised. The daily data have been used to create a seasonal index of the number of heat waves. Using canonical correlation analysis (CCA), heat waves over western Europe are shown to be related to anomalous high pressure over Scandinavia and central western Europe. Other forcing factors such as Atlantic SSTs and European precipitation, the later as a proxy for soil moisture, a known factor in strengthening land-atmosphere feedback processes, are also important. The strength of the relationship between summer SLP anomalies and heat waves is improved (from 35%) to account for around 46% of its variability when summer Atlantic and Mediterranean SSTs and summer European precipitation anomalies are included as predictors. This indicates that these predictors are not completely collinear rather that they each have some contribution to accounting for summer heat wave variability. However, the simplicity and scale of the statistical analysis masks this complex interaction between variables. There is some useful predictive skill of summer heat waves using multiple lagged predictors. A CCA using preceding winter North Atlantic SSTs and preceding January to May Mediterranean total precipitation results in significant hindcast (1972-2003) Spearman rank correlation skill scores up to 0.55 with an average skill score over the domain equal to 0.28±0.28. In agreement with previous studies focused on mean summer temperature, there appears to be some predictability of heat wave events on the decadal scale from the Atlantic Multidecadal Oscillation (AMO), although the long-term global mean temperature is also well related to western European heat waves. Combining these results with the observed positive trends in summer continental European SLP, North Atlantic SSTs and indications of a decline in European summer precipitation then possibly these long-term changes are also related to increased heat wave occurrence and it is important that the physical processes controlling these changes be more fully understoo

    The origin of the "European Medieval Warm Period"

    Get PDF
    Proxy records and results of a three dimensional climate model show that European summer temperatures roughly a millennium ago were comparable to those of the last 25 years of the 20th century, supporting the existence of a summer "Medieval Warm Period" in Europe. Those two relatively mild periods were separated by a rather cold era, often referred to as the "Little Ice Age". Our modelling results suggest that the warm summer conditions during the early second millennium compared to the climate background state of the 13th–18th century are due to a large extent to the long term cooling induced by changes in land-use in Europe. During the last 200 years, the effect of increasing greenhouse gas concentrations, which was partly levelled off by that of sulphate aerosols, has dominated the climate history over Europe in summer. This induces a clear warming during the last 200 years, allowing summer temperature during the last 25 years to reach back the values simulated for the early second millennium. Volcanic and solar forcing plays a weaker role in this comparison between the last 25 years of the 20th century and the early second millennium. Our hypothesis appears consistent with proxy records but modelling results have to be weighted against the existing uncertainties in the external forcing factors, in particular related to land-use changes, and against the uncertainty of the regional climate sensitivity. Evidence for winter is more equivocal than for summer. The forced response in the model displays a clear temperature maximum at the end of the 20th century. However, the uncertainties are too large to state that this period is the warmest of the past millennium in Europe during winter

    European climate response to tropical volcanic eruptions over the last half millennium

    Get PDF
    We analyse the winter and summer climatic signal following 15 major tropical volcanic eruptions over the last half millennium based on multi-proxy reconstructions for Europe. During the first and second post-eruption years we find significant continental scale summer cooling and somewhat drier conditions over Central Europe. In the Northern Hemispheric winter the volcanic forcing induces an atmospheric circulation response that significantly follows a positive NAO state connected with a significant overall warm anomaly and wetter conditions over Northern Europe. Our findings compare well with GCM studies as well as observational studies, which mainly cover the substantially shorter instrumental period and thus include a limited set of major eruptions

    Evidences for a quasi 60-year North Atlantic Oscillation since 1700 and its meaning for global climate change

    Full text link
    The North Atlantic Oscillation (NAO) obtained using instrumental and documentary proxy predictors from Eurasia is found to be characterized by a quasi 60-year dominant oscillation since 1650. This pattern emerges clearly once the NAO record is time integrated to stress its comparison with the temperature record. The integrated NAO (INAO) is found to well correlate with the length of the day (since 1650) and the global surface sea temperature record HadSST2 and HadSST3 (since 1850). These findings suggest that INAO can be used as a good proxy for global climate change, and that a 60-year cycle exists in the global climate since at least 1700. Finally, the INAO ~60-year oscillation well correlates with the ~60- year oscillations found in the historical European aurora record since 1700, which suggests that this 60-year dominant climatic cycle has a solar-astronomical origin

    Recurrent climate winter regimes in reconstructed and modelled 500hPa geopotential height fields over the North Atlantic/European sector 1659-1990

    Get PDF
    Recurrent climate winter regimes are examined from statistically reconstructed and modelled 500hPa geopotential height fields over the North Atlantic/European sector for the period 1659-1990. We investigate the probability density function of the state space spanned by the first two empirical orthogonal functions of combined winter data. Regimes are detected as patterns that correspond to areas of the state space with an unexpected high recurrence probability using a Monte Carlo approach. The reconstruction and the model reveal four recurrent climate regimes. They correspond to the two phases of the North Atlantic Oscillation and two opposite blocking patterns. Complemented by the investigation of the temporal evolution of the climate regimes this leads to the conclusion that the reconstructed and the modelled data for this geographic sector reproduce low-frequency atmospheric variability in the form of regime-like behaviour. The overall evidence for recurrent climate regimes is higher for the model than for the reconstruction. However, comparisons with independent data sources for the period 1659-1990 revealed a more realistic temporal evolution of the regimes for the reconstructed dat

    A heterogeneous microbial consortium producing short-chain fatty acids from lignocellulose.

    Get PDF
    Microbial consortia are a promising alternative to monocultures of genetically modified microorganisms for complex biotransformations. We developed a versatile consortium-based strategy for the direct conversion of lignocellulose to short-chain fatty acids, which included the funneling of the lignocellulosic carbohydrates to lactate as a central intermediate in engineered food chains. A spatial niche enabled in situ cellulolytic enzyme production by an aerobic fungus next to facultative anaerobic lactic acid bacteria and the product-forming anaerobes. Clostridium tyrobutyricum, Veillonella criceti, or Megasphaera elsdenii were integrated into the lactate platform to produce 196 kilograms of butyric acid per metric ton of beechwood. The lactate platform demonstrates the benefits of mixed cultures, such as their modularity and their ability to convert complex substrates into valuable biochemicals

    The importance of ship log data: reconstructing North Atlantic, European and Mediterranean sea level pressure fields back to 1750

    Get PDF
    Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5°×5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W-50°E; 20°N-70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750-1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studie
    corecore