226 research outputs found

    Qualitative aspects of Volterra integro-dynamic system on time scales

    Get PDF
    This paper deals with the resolvent, asymptotic stability and boundedness of the solution of time-varying Volterra integro-dynamic system on time scales in which the coefficient matrix is not necessarily stable. We generalize at time scale some known properties about asymptotic behavior and boundedness from the continuous case. Some new results for discrete case are obtained

    Photoassociation of cold atoms with chirped laser pulses: time-dependent calculations and analysis of the adiabatic transfer within a two-state model

    Full text link
    This theoretical paper presents numerical calculations for photoassociation of ultracold cesium atoms with a chirped laser pulse and detailed analysis of the results. In contrast with earlier work, the initial state is represented by a stationary continuum wavefunction. In the chosen example, it is shown that an important population transfer is achieved to 15\approx 15 vibrational levels in the vicinity of the v=98 bound level in the external well of the 0g(6s+6p3/2)0_g^-(6s+6p_{3/2}) potential. Such levels lie in the energy range swept by the instantaneous frequency of the pulse, thus defining a ``photoassociation window''. Levels outside this window may be significantly excited during the pulse, but no population remains there after the pulse. Finally, the population transfer to the last vibrational levels of the ground a3Σu+a^3\Sigma_u^+(6s + 6s) is significant, making stable molecules. The results are interpreted in the framework of a two state model as an adiabatic inversion mechanism, efficient only within the photoassociation window. The large value found for the photoassociation rate suggests promising applications. The present chirp has been designed in view of creating a vibrational wavepacket in the excited state which is focussing at the barrier of the double well potential.Comment: 49 pages, 9 figures, submitted to Phys. Rev.

    I-Move towards monitoring seasonal and pandemic influenza vaccine effectiveness: lessons learnt from a pilot multi-centric case-control study in europe, 2008-9

    Get PDF
    Within I-MOVE (European programme to monitor seasonal and pandemic influenza vaccine effectiveness (IVE)) five countries conducted IVE pilot case-control studies in 2008-9. One hundred and sixty sentinel general practitioners (GP) swabbed all elderly consulting for influenza-like illness (ILI). Influenza confirmed cases were compared to influenza negative controls. We conducted a pooled analysis to obtain a summary IVE in the age group of >or=65 years. We measured IVE in each study and assessed heterogeneity between studies qualitatively and using the I2 index. We used a one-stage pooled model with study as a fixed effect. We adjusted estimates for age-group, sex, chronic diseases, smoking, functional status, previous influenza vaccinations and previous hospitalisations. The pooled analysis included 138 cases and 189 test-negative controls. There was no statistical heterogeneity (I2=0) between studies but ILI case definition, previous hospitalisations and functional status were slightly different. The adjusted IVE was 59.1% (95% CI: 15.3-80.3%). IVE was 65.4% (95% CI: 15.6-85.8%) in the 65-74, 59.6% (95% CI: -72.6 -90.6%) in the age group of >or=75 and 56.4% (95% CI: -0.2-81.3%) for A(H3). Pooled analysis is feasible among European studies. The variables definitions need further standardisation. Larger sample sizes are needed to achieve greater precision for subgroup analysis. For 2009-10, I-MOVE will extend the study to obtain early IVE estimates in groups targeted for pandemic H1N1 influenza vaccination.European Centre for Disease Prevention and Control (ECDC

    The Isothermal Dendritic Growth Experiment (IDGE)

    Get PDF
    The Isothermal Dendritic Growth Experiment (IDGE) constituted a series of three NASA-supported microgravity experiments, all of which flew aboard the space shuttle, Columbia. This experimental space flight series was designed and operated to grow and record dendrite solidification in the absence of gravity-induced convective heat transfer, and thereby produce a wealth of benchmark-quality data for testing solidification scaling laws. The data and analysis performed on the dendritic growth speed and tip size in Succinontrie (SCN) demonstrates that although the theory yields predictions that are reasonably in agreement with experiment, there are significant discrepancies. However, some of these discrepancies can be explained by accurately describing the diffusion of heat. The key finding involves recognition that the actual three-dimensional shape of dendrites includes time-dependent side-branching and a tip region that is not a paraboloid of revolution. Thus, the role of heat transfer in dendritic growth is validated, with the caveat that a more realistic model of the dendrite then a paraboloid is needed to account for heat flow in an experimentally observed dendrite. We are currently conducting additional analysis to further confirm and demonstrate these conclusions. The data and analyses for the growth selection physics remain much less definitive. From the first flight, the data indicated that the selection parameter, sigma*, is not exactly a constant, but exhibits a slight dependence on the supercooling. Additional data from the second flight are being examined to investigate the selection of a unique dendrite speed, tip size and shape. The IDGE flight series is now complete. We are currently completing analyses and moving towards final data archiving. It is gratifying to see that the IDGE published results and archived data sets are being used actively by other scientists and engineers. In addition, we are also pleased to report that the techniques and IDGE hardware system that the authors developed with NASA, are being currently employed on both designated flight experiments, like EDSE, and on flight definition experiments, like TDSE

    The FIRST large-scale mapping of radon concentration in soil gas and water in Romania

    Get PDF
    In the framework of the last Council Directive 2013/59 (Euratom, 2014) laying down basic safety standards for protection against the dangers arising from exposure to ionizing radiation, the problem of radon was assumed in Romania at national level by responsible authorities through the design and development of a National Radon Action Plan and an adequate legislation (HG nr. 526/2018). In order to identify radon risk areas, however, it is necessary to perform systematic radon measurements in different environmental media (soil gas, water, indoor air) and to map the results. This paper presents an atlas of up-to-date radon in soil and water levels for central and western part of Romania. The radon in soil map includes data from 2564 measurements carried out on-site, using Luk3C radon detector. The Luk-VR system was used to measure radon activity concentration from 2452 samples of drinking water. The average radon activity concentration was 29.3?kBq?m-3 for soil gas, respectively 9.8?Bq?l-1 for water dissolved air. Mapping of radon can be a useful tool to implement radon policies at both the national and local levels, defining priority areas for further study when land-use decisions must be made.This work was supported by the Romanian National Authority for Scientific Research and Innovation, CNCS-UEFISCDI, by the project ”Radon map (residential, geogenic, water) for center, west and north-west regions from Romania (RAMARO), PN-II-PCCA-PT-73/2012 and by the project ID P_37_229, Contract No. 22/01.09.2016, with the title „Smart Systems for Public Safety through Control and Mitigation of Residential Radon linked with Energy Efficiency Optimization of Buildings in Romanian Major Urban Agglomerations SMARTRAD-EN” of the POC Programme

    Crossover Scaling in Dendritic Evolution at Low Undercooling

    Full text link
    We examine scaling in two-dimensional simulations of dendritic growth at low undercooling, as well as in three-dimensional pivalic acid dendrites grown on NASA's USMP-4 Isothermal Dendritic Growth Experiment. We report new results on self-similar evolution in both the experiments and simulations. We find that the time dependent scaling of our low undercooling simulations displays a cross-over scaling from a regime different than that characterizing Laplacian growth to steady-state growth

    An Innovative System for Monitoring Radon and Indoor Air Quality

    Get PDF
    Nowadays, a global trend towards increasing the performance of a building is the reduction in energy consumption. In this respect, for existing residential buildings the most common techniques are the application of a thermal insulation layer to the exterior wall of the building and / or window replacements. Unfortunately, their application without proper education of those involved may have a negative effect on the indoor air quality. The use of a continuous monitoring device can give the owner the ability to understand the impact of his behaviour on indoor air quality and, as such, to adjust his routine in order to maintain the indoor air quality at the desired level. This paper introduces a prototype, called ICA system, for continuous, real-time indoor air quality monitoring. The ICA system presents sensors for monitoring the concentration of radon, CO2, CO, VOCs, as well as meteorological parameters, such as temperature, pressure, and relative humidity. Experiments were performed both in laboratory and in situ conditions for testing and validating the proposed system.This work was supported by the project ID P_37_229, Contract No. 22/01.09.2016, with the title “Smart Systems for Public Safety through Control and Mitigation of Residential Radon linked with Energy Efficiency Optimization of Buildings in Romanian Major Urban Agglomerations SMART-RAD-EN” of the POC Programme

    Standardization of measles, mumps and rubella assays to enable comparisons of seroprevalence data across 21 European countries and Australia

    Get PDF
    The aim of the European Sero-Epidemiology Network is to establish comparability of the serological surveillance of vaccine-preventable diseases in Europe. The designated reference laboratory (RL) for measles, mumps, rubella (MMR) prepared and tested a panel of 151 sera by the reference enzyme immunoassay (rEIA). Laboratories in 21 countries tested the panel for antibodies against MMR using their usual assay (a total of 16 different EIAs) and the results were plotted against the reference results in order to obtain equations for the standardization of national serum surveys. The RL also tested the panel by the plaque neutralization test (PNT). Large differences in qualitative results were found compared to the RL. Well-fitting standardization equations with R20·8 were obtained for almost all laboratories through regression of the quantitative results against those of the RL. When compared to PNT, the rEIA had a sensitivity of 95·3%, 92·8% and 100% and a specificity of 100%, 87·1% and 92·8% for measles, mumps and rubella, respectively. The need for standardization was highlighted by substantial inter-country differences. Standardization was successful and the selected standardization equations allowed the conversion of local serological results into common units and enabled direct comparison of seroprevalence data of the participating countrie
    corecore