205 research outputs found

    Ultrahigh-Field MRI in Human Ischemic Stroke – a 7 Tesla Study

    Get PDF
    INTRODUCTION: Magnetic resonance imaging (MRI) using field strengths up to 3 Tesla (T) has proven to be a powerful tool for stroke diagnosis. Recently, ultrahigh-field (UHF) MRI at 7 T has shown relevant diagnostic benefits in imaging of neurological diseases, but its value for stroke imaging has not been investigated yet. We present the first evaluation of a clinically feasible stroke imaging protocol at 7 T. For comparison an established stroke imaging protocol was applied at 3 T. METHODS: In a prospective imaging study seven patients with subacute and chronic stroke were included. Imaging at 3 T was immediately followed by 7 T imaging. Both protocols included T1-weighted 3D Magnetization-Prepared Rapid-Acquired Gradient-Echo (3D-MPRAGE), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-FLAIR), T2-weighted 2D Fluid Attenuated Inversion Recovery (2D-T2-TSE), T2* weighted 2D Fast Low Angle Shot Gradient Echo (2D-HemoFLASH) and 3D Time-of-Flight angiography (3D-TOF). RESULTS: The diagnostic information relevant for clinical stroke imaging obtained at 3 T was equally available at 7 T. Higher spatial resolution at 7 T revealed more anatomical details precisely depicting ischemic lesions and periinfarct alterations. A clear benefit in anatomical resolution was also demonstrated for vessel imaging at 7 T. RF power deposition constraints induced scan time prolongation and reduced brain coverage for 2D-FLAIR, 2D-T2-TSE and 3D-TOF at 7 T versus 3 T. CONCLUSIONS: The potential of 7 T MRI for human stroke imaging is shown. Our pilot study encourages a further evaluation of the diagnostic benefit of stroke imaging at 7 T in a larger study

    Meta-analysis of radiofrequency ablation versus hepatic resection for small hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no clear consensus on the better therapy [radiofrequency ablation (RFA) versus hepatic resection (HR)] for small hepatocellular carcinoma (HCC) eligible for surgical treatments. This study is a meta-analysis of the available evidence.</p> <p>Methods</p> <p>Systematic review and meta-analysis of trials comparing RFA with HR for small HCC published from 1997 to 2009 in PubMed and Medline. Pooled odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using either the fixed effects model or random effects model.</p> <p>Results</p> <p>One randomized controlled trial, and 9 nonrandomized controlled trials studies were included in this analysis. These studies included a total of 1411 patients: 744 treated with RFA and 667 treated with HR. The overall survival was significantly higher in patients treated with HR than in those treated with RFA at 3 years (OR: 0.56, 95% CI: 0.44-0.71), and at 5 year (OR: 0.60, 95% CI: 0.36-1.01). RFA has a higher rates of local intrahepatic recurrence compared to HR (OR: 4.50, 95% CI: 2.45-8.27). In the HR group the 1, 3, and 5 years disease -free survival rates were significantly better than in the HR-treated patients (respectively: OR: 0.54, 95% CI: 0.35-0.84; OR: 0.44, 95% CI: 0.28-0.68; OR: 0.64, 95% CI: 0.42-0.99). The postoperative morbidity was higher with HR (OR: 0.29, 95% CI: 0.13-0.65), but no significant differences were found concerning mortality. For tumors ≤ 3 cm HR did not differ significantly from RFA for survival, as reported in three NRCTs .</p> <p>Conclusions</p> <p>HR was superior to RFA in the treatment of patients with small HCC eligible for surgical treatments, particularly for tumors > 3 cm. However, the findings have to be carefully interpreted due to the lower level of evidence.</p

    Lipid analogs reveal features critical for hemolysis and diminish granadaene mediated Group B Streptococcus infection

    Get PDF
    Although certain microbial lipids are toxins, the structural features important for cytotoxicity remain unknown. Increased functional understanding is essential for developing therapeutics against toxic microbial lipids. Group B Streptococci (GBS) are bacteria associated with preterm births, stillbirths, and severe infections in neonates and adults. GBS produce a pigmented, cytotoxic lipid, known as granadaene. Despite its importance to all manifestations of GBS disease, studies towards understanding granadaene’s toxic activity are hindered by its instability and insolubility in purified form. Here, we report the synthesis and screening of lipid derivatives inspired by granadaene, which reveal features central to toxin function, namely the polyene chain length. Furthermore, we show that vaccination with a non-toxic synthetic analog confers the production of antibodies that inhibit granadaene-mediated hemolysis ex vivo and diminish GBS infection in vivo. This work provides unique structural and functional insight into granadaene and a strategy to mitigate GBS infection, which will be relevant to other toxic lipids encoded by human pathogens.This work was supported by funding from the National Institutes of Health Grants R01AI112619, R01AI133976, R01AI100989, and R21AI125907 and seed funds from Seattle Childrens Research Institute to L.

    Comparison of percutaneous radiofrequency thermal ablation and surgical resection for small hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this investigation was to compare the outcome of percutaneous radiofrequency thermal ablation therapy (PRFA) with surgical resection (SR) in the treatment of single and small hepatocellular carcinoma (HCC).</p> <p>Methods</p> <p>We conducted a retrospective cohort study on 231 treatment naive patients with a single HCC ≤ 3 cm who had received either curative PRFA (162 patients) or curative SR (69 patients). All patients were regularly followed up after treatment at our department with blood and radiologic tests.</p> <p>Results</p> <p>The 1-, 3- and 5-year overall survival rates after PRFA and SR were 95.4%, 79.6% and 63.1%, respectively in the PRFA group and 100%, 81.4% and 74.6%, respectively in the SR group. The corresponding recurrence free survival rates at 1, 3 and 5 years after PRFA and SR were 82.0%, 38.3% and 18.0%, respectively in the PRFA group and 86.0%, 47.2% and 26.0%, respectively in the SR group. In terms of overall survival and recurrence free survival, there were no significant differences between these two groups. In comparison of PRFA group patients with liver cirrhosis (LC) (n = 127) and SR group patients with LC (n = 50) and in comparison of PRFA group patients without LC (n = 35) and SR group patients without LC (n = 19), there were also no significant differences between two groups in terms of overall survival and recurrence free survival. In the multivariate analysis of the risk factors contributing to overall survival, serum albumin level was the sole significant factor. In the multivariate analysis of the risk factors contributing to recurrence free survival, presence of LC was the sole significant factor. The rate of serious adverse events in the SR group was significantly higher than that in the PRFA group (P = 0.023). Hospitalization length in the SR group was significantly longer than in the PRFA group (P = 0.013).</p> <p>Conclusions</p> <p>PRFA is as effective as SR in the treatment of single and small HCC, and is less invasive than SR. Therefore, PRFA could be a first choice for the treatment of single and small HCC.</p

    Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript

    Get PDF
    Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology

    Structural cerebellar correlates of cognitive functions in spinocerebellar ataxia type 2

    Get PDF
    Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disease involving the cerebellum and characterized by a typical motor syndrome. In addition, the presence of cognitive impairment is now widely acknowledged as a feature of SCA2. Given the extensive connections between the cerebellum and associative cerebral areas, it is reasonable to hypothesize that cerebellar neurodegeneration associated with SCA2 may impact on the cerebellar modulation of the cerebral cortex, thus resulting in functional impairment. The aim of the present study was to investigate and quantitatively map the pattern of cerebellar gray matter (GM) atrophy due to SCA2 neurodegeneration and to correlate that with patients' cognitive performances. Cerebellar GM maps were extracted and compared between SCA2 patients (n = 9) and controls (n = 33) by using voxel-based morphometry. Furthermore, the relationship between cerebellar GM atrophy and neuropsychological scores of the patients was assessed. Specific cerebellar GM regions were found to be affected in patients. Additionally, GM loss in cognitive posterior lobules (VI, Crus I, Crus II, VIIB, IX) correlated with visuospatial, verbal memory and executive tasks, while additional correlations with motor anterior (V) and posterior (VIIIA, VIIIB) lobules were found for the tasks engaging motor and planning components. Our results provide evidence that the SCA2 neurodegenerative process affects the cerebellar cortex and that MRI indices of atrophy in different cerebellar subregions may account for the specificity of cognitive symptomatology observed in patients, as result of a cerebello-cerebral dysregulation

    Consensus Paper: Cerebellum and Social Cognition.

    Get PDF
    The traditional view on the cerebellum is that it controls motor behavior. Although recent work has revealed that the cerebellum supports also nonmotor functions such as cognition and affect, only during the last 5 years it has become evident that the cerebellum also plays an important social role. This role is evident in social cognition based on interpreting goal-directed actions through the movements of individuals (social "mirroring") which is very close to its original role in motor learning, as well as in social understanding of other individuals' mental state, such as their intentions, beliefs, past behaviors, future aspirations, and personality traits (social "mentalizing"). Most of this mentalizing role is supported by the posterior cerebellum (e.g., Crus I and II). The most dominant hypothesis is that the cerebellum assists in learning and understanding social action sequences, and so facilitates social cognition by supporting optimal predictions about imminent or future social interaction and cooperation. This consensus paper brings together experts from different fields to discuss recent efforts in understanding the role of the cerebellum in social cognition, and the understanding of social behaviors and mental states by others, its effect on clinical impairments such as cerebellar ataxia and autism spectrum disorder, and how the cerebellum can become a potential target for noninvasive brain stimulation as a therapeutic intervention. We report on the most recent empirical findings and techniques for understanding and manipulating cerebellar circuits in humans. Cerebellar circuitry appears now as a key structure to elucidate social interactions

    Consequences of Lineage-Specific Gene Loss on Functional Evolution of Surviving Paralogs: ALDH1A and Retinoic Acid Signaling in Vertebrate Genomes

    Get PDF
    Genome duplications increase genetic diversity and may facilitate the evolution of gene subfunctions. Little attention, however, has focused on the evolutionary impact of lineage-specific gene loss. Here, we show that identifying lineage-specific gene loss after genome duplication is important for understanding the evolution of gene subfunctions in surviving paralogs and for improving functional connectivity among human and model organism genomes. We examine the general principles of gene loss following duplication, coupled with expression analysis of the retinaldehyde dehydrogenase Aldh1a gene family during retinoic acid signaling in eye development as a case study. Humans have three ALDH1A genes, but teleosts have just one or two. We used comparative genomics and conserved syntenies to identify loss of ohnologs (paralogs derived from genome duplication) and to clarify uncertain phylogenies. Analysis showed that Aldh1a1 and Aldh1a2 form a clade that is sister to Aldh1a3-related genes. Genome comparisons showed secondarily loss of aldh1a1 in teleosts, revealing that Aldh1a1 is not a tetrapod innovation and that aldh1a3 was recently lost in medaka, making it the first known vertebrate with a single aldh1a gene. Interestingly, results revealed asymmetric distribution of surviving ohnologs between co-orthologous teleost chromosome segments, suggesting that local genome architecture can influence ohnolog survival. We propose a model that reconstructs the chromosomal history of the Aldh1a family in the ancestral vertebrate genome, coupled with the evolution of gene functions in surviving Aldh1a ohnologs after R1, R2, and R3 genome duplications. Results provide evidence for early subfunctionalization and late subfunction-partitioning and suggest a mechanistic model based on altered regulation leading to heterochronic gene expression to explain the acquisition or modification of subfunctions by surviving ohnologs that preserve unaltered ancestral developmental programs in the face of gene loss
    corecore