8 research outputs found

    Cyclone: an accessible pipeline to analyze, evaluate, and optimize multiparametric cytometry data

    Get PDF
    In the past decade, high-dimensional single-cell technologies have revolutionized basic and translational immunology research and are now a key element of the toolbox used by scientists to study the immune system. However, analysis of the data generated by these approaches often requires clustering algorithms and dimensionality reduction representation, which are computationally intense and difficult to evaluate and optimize. Here, we present Cytometry Clustering Optimization and Evaluation (Cyclone), an analysis pipeline integrating dimensionality reduction, clustering, evaluation, and optimization of clustering resolution, and downstream visualization tools facilitating the analysis of a wide range of cytometry data. We benchmarked and validated Cyclone on mass cytometry (CyTOF), full-spectrum fluorescence-based cytometry, and multiplexed immunofluorescence (IF) in a variety of biological contexts, including infectious diseases and cancer. In each instance, Cyclone not only recapitulates gold standard immune cell identification but also enables the unsupervised identification of lymphocytes and mononuclear phagocyte subsets that are associated with distinct biological features. Altogether, the Cyclone pipeline is a versatile and accessible pipeline for performing, optimizing, and evaluating clustering on a variety of cytometry datasets, which will further power immunology research and provide a scaffold for biological discovery

    VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO

    No full text
    Future ton-scale liquefied noble gas detectors depend on efficient light detection in the vacuum ultraviolet (VUV) range. In the past years, silicon photomultipliers (SiPMs) have emerged as a valid alternative to standard photomultiplier tubes or large-area avalanche photodiodes. The next-generation double-beta decay experiment, nEXO, with a 5-ton liquid xenon time projection chamber will use SiPMs for detecting the 175-nm xenon scintillation light, in order to achieve an energy resolution of sigma/Q(beta beta) = 1%. This paper presents recent measurements of the VUV-HD generation SiPMs from Fondazione Bruno Kessler, Trento, Italy, in two complementary setups. It includes measurements of the photon-detection efficiency (PDE) with gaseous xenon scintillation light in a vacuum setup and dark measurements in a dry nitrogen gas setup. We report improved PDE at 175 nm compared to previous generation devices that would meet the criteria of nEXO. Furthermore, we present the projected nEXO detector light collection and energy resolution that could be achieved by using these SiPMs © 2018 IEEE

    VUV-Sensitive Silicon Photomultipliers for Xenon Scintillation Light Detection in nEXO

    No full text

    DIII-D research towards establishing the scientific basis for future fusion reactors

    No full text
    DIII-D research is addressing critical challenges in preparation for ITER and the next generation of fusion devices through focusing on plasma physics fundamentals that underpin key fusion goals, understanding the interaction of disparate core and boundary plasma physics, and developing integrated scenarios for achieving high performance fusion regimes. Fundamental investigations into fusion energy science find that anomalous dissipation of runaway electrons (RE) that arise following a disruption is likely due to interactions with RE-driven kinetic instabilities, some of which have been directly observed, opening a new avenue for RE energy dissipation using naturally excited waves. Dimensionless parameter scaling of intrinsic rotation and gyrokinetic simulations give a predicted ITER rotation profile with significant turbulence stabilization. Coherence imaging spectroscopy confirms near sonic flow throughout the divertor towards the target, which may account for the convection-dominated parallel heat flux. Core-boundary integration studies show that the small angle slot divertor achieves detachment at lower density and extends plasma cooling across the divertor target plate, which is essential for controlling heat flux and erosion. The Super H-mode regime has been extended to high plasma current (2.0 MA) and density to achieve very high pedestal pressures (similar to 30 kPa) and stored energy (3.2 MJ) with H-98y2 approximate to 1.6-2.4. In scenario work, the ITER baseline Q = 10 scenario with zero injected torque is found to have a fusion gain metric beta(TE) independent of current between q(95) = 2.8-3.7, and a lower limit of pedestal rotation for RMP ELM suppression has been found. In the wide pedestal QH-mode regime that exhibits improved performance and no ELMs, the start-up counter torque has been eliminated so that the entire discharge uses approximate to 0 injected torque and the operating space is more ITER-relevant. Finally, the high-beta(N) (<= 3.8) hybrid scenario has been extended to the high-density levels necessary for radiating divertor operation, achieving similar to 40% divertor heat flux reduction using either argon or neon with P-tot up to 15 MW

    Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution

    Get PDF
    3C 279 is an archetypal blazar with a prominent radio jet that show broadband flux density variability across the entire electromagnetic spectrum. We use an ultra-high angular resolution technique - global Very Long Baseline Interferometry (VLBI) at 1.3 mm (230 GHz) - to resolve the innermost jet of 3C 279 in order to study its fine-scale morphology close to the jet base where highly variable gamma -ray emission is thought to originate, according to various models. The source was observed during four days in April 2017 with the Event Horizon Telescope at 230 GHz, including the phased Atacama Large Millimeter/submillimeter Array (ALMA), at an angular resolution of similar to 20 mu as (at a redshift of z=0.536 this corresponds to similar to 0.13 pc similar to 1700 Schwarzschild radii with a black hole mass M-BH=8x10(8) M-circle dot). Imaging and model-fitting techniques were applied to the data to parameterize the fine-scale source structure and its variation. We find a multicomponent inner jet morphology with the northernmost component elongated perpendicular to the direction of the jet, as imaged at longer wavelengths. The elongated nuclear structure is consistent on all four observing days and across different imaging methods and model-fitting techniques, and therefore appears robust. Owing to its compactness and brightness, we associate the northern nuclear structure as the VLBI &quot;core&quot;. This morphology can be interpreted as either a broad resolved jet base or a spatially bent jet. We also find significant day-to-day variations in the closure phases, which appear most pronounced on the triangles with the longest baselines. Our analysis shows that this variation is related to a systematic change of the source structure. Two inner jet components move non-radially at apparent speeds of similar to 15 c and similar to 20 c (similar to 1.3 and similar to 1.7 mu as day(-1), respectively), which more strongly supports the scenario of traveling shocks or instabilities in a bent, possibly rotating jet. The observed apparent speeds are also coincident with the 3C 279 large-scale jet kinematics observed at longer (cm) wavelengths, suggesting no significant jet acceleration between the 1.3 mm core and the outer jet. The intrinsic brightness temperature of the jet components are less than or similar to 10(10) K, a magnitude or more lower than typical values seen at &gt;= 7 mm wavelengths. The low brightness temperature and morphological complexity suggest that the core region of 3C 279 becomes optically thin at short (mm) wavelengths

    3C 279 Event Horizon Telescope imaging

    No full text
    VizieR online Data Catalogue associated with article published in journal Astronomy &amp; Astrophysics with title 'Event Horizon Telescope imaging of the archetypal blazar 3C 279 at an extreme 20 microarcsecond resolution.' (bibcode: 2020A&amp;A...640A..69K
    corecore