86 research outputs found

    Pedestrian Detection aided by Deep Learning Semantic Tasks

    Full text link
    Deep learning methods have achieved great success in pedestrian detection, owing to its ability to learn features from raw pixels. However, they mainly capture middle-level representations, such as pose of pedestrian, but confuse positive with hard negative samples, which have large ambiguity, e.g. the shape and appearance of `tree trunk' or `wire pole' are similar to pedestrian in certain viewpoint. This ambiguity can be distinguished by high-level representation. To this end, this work jointly optimizes pedestrian detection with semantic tasks, including pedestrian attributes (e.g. `carrying backpack') and scene attributes (e.g. `road', `tree', and `horizontal'). Rather than expensively annotating scene attributes, we transfer attributes information from existing scene segmentation datasets to the pedestrian dataset, by proposing a novel deep model to learn high-level features from multiple tasks and multiple data sources. Since distinct tasks have distinct convergence rates and data from different datasets have different distributions, a multi-task objective function is carefully designed to coordinate tasks and reduce discrepancies among datasets. The importance coefficients of tasks and network parameters in this objective function can be iteratively estimated. Extensive evaluations show that the proposed approach outperforms the state-of-the-art on the challenging Caltech and ETH datasets, where it reduces the miss rates of previous deep models by 17 and 5.5 percent, respectively

    Consensus Adversarial Defense Method Based on Augmented Examples

    Get PDF
    Deep learning has been used in many computer-vision-based industrial Internet of Things applications. However, deep neural networks are vulnerable to adversarial examples that have been crafted specifically to fool a system while being imperceptible to humans. In this study, we propose a consensus defense (Cons-Def) method to defend against adversarial attacks. Cons-Def implements classification and detection based on the consensus of the classifications of the augmented examples, which are generated based on an individually implemented intensity exchange on the red, green, and blue components of the input image. We train a convolutional neural network using augmented examples together with their original examples. For the test image to be assigned to a specific class, the class occurrence of the classifications on its augmented images should be the maximum and reach a defined threshold. Otherwise, it is detected as an adversarial example. The comparison experiments are implemented on MNIST, CIFAR-10, and ImageNet. The average defense success rate (DSR) against white-box attacks on the test sets of the three datasets is 80.3%. The average DSR against black-box attacks on CIFAR-10 is 91.4%. The average classification accuracies of Cons-Def on benign examples of the three datasets are 98.0%, 78.3%, and 66.1%. The experimental results show that Cons-Def shows a high classification performance on benign examples and is robust against white-box and black-box adversarial attacks

    Using outlier elimination to assess learning-based correspondence matching methods

    Get PDF
    Recently, deep learning (DL) technology has been widely used in correspondence matching. The learning-based models are usually trained on benign image pairs with partial overlaps. Since DL model is usually data-dependent, non-overlapping images may be used as poison samples to fool the model and produce false registrations. In this study, we propose an outlier elimination based assessment method (OEAM) to assess the registrations of learning-based correspondence matching method on partially overlapping and non-overlapping images. OEAM first eliminates outliers based on spatial paradox. Then OEAM implements registration assessment in two streams using the obtained core correspondence set. If the cardinality of the core set is sufficiently small, the input registration is assessed as a low-quality registration. Otherwise, it is assessed to be of high quality, and OEAM improves its registration performance using the core set. OEAM is a post-processing technique imposed on learning-based method. The comparison experiments are implemented on outdoor (YFCC100M) and indoor (SUN3D) datasets using four deep learning-based methods. The experimental results on registrations of partially overlapping images show that OEAM can reliably infer low-quality registrations and improve performance on high-quality registrations. The experiments on registrations of non-overlapping images demonstrate that learning-based methods are vulnerable to poisoning attacks launched by non overlapping images, and OEAM is robust against poisoning attacks crafted by non-overlapping images

    Prior knowledge-based deep learning method for indoor object recognition and application

    Get PDF
    Indoor object recognition is a key task for indoor navigation by mobile robots. Although previous work has produced impressive results in recognizing known and familiar objects, the research of indoor object recognition for robot is still insufficient. In order to improve the detection precision, our study proposed a prior knowledge-based deep learning method aimed to enable the robot to recognize indoor objects on sight. First, we integrate the public Indoor dataset and the private frames of videos (FoVs) dataset to train a convolutional neural network (CNN). Second, mean images, which are used as a type of colour knowledge, are generated for all the classes in the Indoor dataset. The distance between every mean image and the input image produces the class weight vector. Scene knowledge, which consists of frequencies of occurrence of objects in the scene, is then employed as another prior knowledge to determine the scene weight. Finally, when a detection request is launched, the two vectors together with a vector of classification probability instigated by the deep model are multiplied to produce a decision vector for classification. Experiments show that detection precision can be improved by employing the prior colour and scene knowledge. In addition, we applied the method to object recognition in a video. The results showed potential application of the method for robot vision

    Impacts of soil and water pollution on food safety and health risks in China

    Get PDF
    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to ‘cancer villages’ which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach

    An intelligent recommender system based on predictive analysis in telehealthcare environment

    Get PDF
    The use of intelligent technologies for providing useful recommendations to patients suffering chronic diseases may play a positive role in improving the general life quality of patients and help reduce the workload and cost involved in their daily healthcare. The objective of this study is to develop an intelligent recommender system based on predictive analysis for advising patients in the telehealth environment concerning whether they need to take the body test one day in advance by analyzing medical measurements of a patient for the past k days. The proposed algorithms supporting the recommender system have been validated using a time series telehealth data recorded from heart disease patients which were collected from May to January 2012, from our industry collaborator Tunstall. The experimental results show that the proposed system yields satisfactory recommendation accuracy and offer a promising way for saving the workload for patients to conduct body tests every day. This study highlights the possible usefulness of the computerized analysis of time series telehealth data in providing appropriate recommendations to patients suffering chronic diseases such as heart diseases patients

    Building the new international science of the agriculture–food–water–environment nexus in China and the world

    Get PDF
    The multiple, complex and systemic problems of the agriculture–food–water–environment nexus (“Nexus”) are among the most significant challenges of the 21st century. China is a key site for Nexus research amidst profound socio-environmental problems. The policy implications of these problems have been authoritatively summarized elsewhere. This study presents discussions at an international workshop in Guangzhou that asked instead “What science is needed to deliver the growing policy commitments regarding these challenges? And, What changes are needed to the science itself?” Understanding and effective intervention regarding the Nexus calls for a paradigm shift: to a new kind of science of (capacity for) international, interdisciplinary, and impactful research working with and within complex socio-natural systems. We here argue that science must become proactive in approach, striving only for “minimal harm” not “silver bullet” solutions, and adopting an explicitly long-term strategic perspective. Together, these arguments lead to calls for reorienting science and science policy in three ways: from short-term remediation to longer-term optimization; from a focus on environmental threats to one on the opportunities for international collaborative learning; and toward supporting new forms of scientific career. We bring these points together by recommending a new form of scientific institution: a global network of collaborative Nexus Centres, under the umbrella of a global Food Nexus Organization akin to those of the human genome and proteome

    Ensuring water resource security in China; the need for advances in evidence based policy to support sustainable management.

    Get PDF
    China currently faces a water resource sustainability problem which is likely to worsen into the future. The Chinese government is attempting to address this problem through legislative action, but faces severe challenges in delivering its high ambitions. The key challenges revolve around the need to balance water availability with the need to feed a growing population under a changing climate and its ambitions for increased economic development. This is further complicated by the complex and multi-layered government departments, often with overlapping jurisdictions, which are not always aligned in their policy implementation and delivery mechanisms. There remain opportunities for China to make further progress and this paper reports on the outcomes of a science-to-policy roundtable meeting involving scientists and policy-makers in China. It identifies, in an holistic manner, new opportunities for additional considerations for policy implementation, continued and new research requirements to ensure evidence-based policies are designed and implemented and identifies the needs and opportunities to effectively monitor their effectiveness. Other countries around the world can benefit from assessing this case study in China
    • 

    corecore