1,644 research outputs found

    Self-starting capability of a Darrieus turbine

    Get PDF
    Darrieus-type vertical axis wind turbines have a number of potential advantages for small-scale and domestic applications. For such applications, the issues of cost and reliability are paramount and hence simplicity of design of the structure, the generator, and any control system is vital. A particular concern relating to Darrieus turbines is their potential to self-start. If, as has been suggested by several authors, they require external assistance to start then much of their advantage is lost. The purpose of the study described here is, therefore, to investigate their starting performance through the development and validation of computational simulation and to determine the parameters that govern the capability to self-start. A case study is presented based upon the use of the widely used and well documented, symmetrical NACA 0012 turbine blade profile. It is shown that a lightly loaded, three-bladed rotor always has the potential to self start under steady wind conditions, whereas the starting of a two-bladed device is dependent upon its initial starting orientation

    Predictors and outcomes of sustained, intermittent or never achieving remission in patients with recent onset inflammatory polyarthritis:Results from the Norfolk Arthritis Register

    Get PDF
    Objectives: Early remission is the current treatment strategy for patients with inflammatory polyarthritis (IP) and RA. Our objective was to identify baseline factors associated with achieving remission: sustained (SR), intermittent (IR) or never (NR) over a 5-year period in patients with early IP.  Methods: Clinical and demographic data of patients with IP recruited to the Norfolk Arthritis Register (NOAR) were obtained at baseline and years 1, 2, 3 and 5. Remission was defined as no tender or swollen joints (out of 51). Patients were classified as NR or PR, respectively, if they were in remission at: no assessment or ⩾3 consecutive assessments after baseline, and IR otherwise. Ordinal regression and a random effects model, respectively, were used to examine the association between baseline factors, remission group and HAQ scores over time.  Results: A total of 868 patients (66% female) were included. Of these, 54%, 34% and 12% achieved NR, IR and SR, respectively. In multivariate analysis, female sex (odds ratio, OR 0.47, 95% CI: 0.35, 0.63), higher tender joint count (OR = 0.94, 95% CI: 0.93, 0.96), higher HAQ (OR = 0.59, 95% CI: 0.48, 0.74), being obese (OR = 0.70, 95% CI: 0.50, 0.99), hypertensive (OR = 0.67, 95% CI: 0.50, 0.90) or depressed (OR = 0.74, 95% CI: 0.55, 1.00) at baseline were independent predictors of being in a lower remission group. IR and SR were associated with lower HAQ scores over time and lower DAS28 at year 5.  Conclusion: Women with higher tender joint count and disability at baseline, depression, obesity and hypertension were less likely to achieve remission. This information could help when stratifying patients for more aggressive therapy

    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction

    Get PDF
    The Cretaceous/Paleogene mass extinction, 66 Ma, included the demise of non-avian dinosaurs. Intense debate has focused on the relative roles of Deccan volcanism and the Chicxulub asteroid impact as kill mechanisms for this event. Here, we combine fossil-occurrence data with paleoclimate and habitat suitability models to evaluate dinosaur habitability in the wake of various asteroid impact and Deccan volcanism scenarios. Asteroid impact models generate a prolonged cold winter that suppresses potential global dinosaur habitats. Conversely, long-term forcing from Deccan volcanism (carbon dioxide [CO2]-induced warming) leads to increased habitat suitability. Short-term (aerosol cooling) volcanism still allows equatorial habitability. These results support the asteroid impact as the main driver of the non-avian dinosaur extinction. By contrast, induced warming from volcanism mitigated the most extreme effects of asteroid impact, potentially reducing the extinction severity

    Data-constrained assessment of ocean circulation changes since the middle Miocene in an Earth system model

    Get PDF
    Since the middle Miocene (15 Ma, million years ago), the Earth's climate has undergone a long-term cooling trend, characterised by a reduction in ocean temperatures of up to 7–8 ∘C. The causes of this cooling are primarily thought to be due to tectonic plate movements driving changes in large-scale ocean circulation patterns, and hence heat redistribution, in conjunction with a drop in atmospheric greenhouse gas forcing (and attendant ice-sheet growth and feedback). In this study, we assess the potential to constrain the evolving patterns of global ocean circulation and cooling over the last 15 Ma by assimilating a variety of marine sediment proxy data in an Earth system model. We do this by first compiling surface and benthic ocean temperature and benthic carbon-13 (δ13C) data in a series of seven time slices spaced at approximately 2.5 Myr intervals. We then pair this with a corresponding series of tectonic and climate boundary condition reconstructions in the cGENIE (“muffin” release) Earth system model, including alternative possibilities for an open vs. closed Central American Seaway (CAS) from 10 Ma onwards. In the cGENIE model, we explore uncertainty in greenhouse gas forcing and the magnitude of North Pacific to North Atlantic salinity flux adjustment required in the model to create an Atlantic Meridional Overturning Circulation (AMOC) of a specific strength, via a series of 12 (one for each tectonic reconstruction) 2D parameter ensembles. Each ensemble member is then tested against the observed global temperature and benthic δ13C patterns. We identify that a relatively high CO2 equivalent forcing of 1120 ppm is required at 15 Ma in cGENIE to reproduce proxy temperature estimates in the model, noting that this CO2 forcing is dependent on the cGENIE model's climate sensitivity and that it incorporates the effects of all greenhouse gases. We find that reproducing the observed long-term cooling trend requires a progressively declining greenhouse gas forcing in the model. In parallel to this, the strength of the AMOC increases with time despite a reduction in the salinity of the surface North Atlantic over the cooling period, attributable to falling intensity of the hydrological cycle and to lowering polar temperatures, both caused by CO2-driven global cooling. We also find that a closed CAS from 10 Ma to present shows better agreement between benthic δ13C patterns and our particular series of model configurations and data. A final outcome of our analysis is a pronounced ca. 1.5 ‰ decline occurring in atmospheric (and ca. 1 ‰ ocean surface) δ13C that could be used to inform future δ13C-based proxy reconstructions.</p

    Making Passwords Secure and Usable

    Get PDF
    To date, system research has focused on designing security mechanisms to protect systems access although their usability has rarely been investigated. This paper reports a study in which users’ perceptions of password mechanisms were investigated through questionnaires and interviews. Analysis of the questionnaires shows that many users report problems, linked to the number of passwords and frequency of password use. In-depth analysis of the interview data revealed that the degree to which users conform to security mechanisms depends on their perception of security levels, information sensitivity and compatibility with work practices. Security mechanisms incompatible with these perceptions may be circumvented by users and thereby undermine system security overall

    Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition

    Get PDF
    The glaciation of Antarctica at the Eocene–Oligocene transition (approx. 34 million years ago) was a major shift in the Earth’s climate system, but the mechanisms that caused the glaciation, and its effects, remain highly debated. A number of recent studies have used coupled atmosphere–ocean climate models to assess the climatic effects of Antarctic glacial inception, with often contrasting results. Here, using the HadCM3L model, we show that the global atmosphere and ocean response to growth of the Antarctic ice sheet is sensitive to subtle variations in palaeogeography, using two reconstructions representing Eocene and Oligocene geological stages. The earlier stage (Eocene; Priabonian), which has a relatively constricted Tasman Seaway, shows a major increase in sea surface temperature over the Pacific sector of the Southern Ocean in response to the ice sheet. This response does not occur for the later stage (Oligocene; Rupelian), which has a more open Tasman Seaway. This difference in temperature response is attributed to reorganization of ocean currents between the stages. Following ice sheet expansion in the earlier stage, the large Ross Sea gyre circulation decreases in size. Stronger zonal flow through the Tasman Seaway allows salinities to increase in the Ross Sea, deep-water formation initiates and multiple feedbacks then occur amplifying the temperature response. This is potentially a model-dependent result, but it highlights the sensitive nature of model simulations to subtle variations in palaeogeography, and highlights the need for coupled ice sheet–climate simulations to properly represent and investigate feedback processes acting on these time scales

    Modelling of the ICRF induced E x B convection in the scrape-off-layer of ASDEX Upgrade

    Get PDF
    In magnetic controlled fusion devices, plasma heating with radio-frequency (RF) waves in the ion cyclotron (IC) range of frequency relies on the electric field of the fast wave to heat the plasma. However, the slow wave can be generated parasitically. The electric field of the slow wave can induce large biased plasma potential (DC potential) through sheath rectification. The rapid variation of the rectified potential across the equilibrium magnetic field can cause significant convective transport (E x B drifts) in the scrape-off layer (SOL). In order to understand this phenomenon and reproduce the experiments, 3D realistic simulations are carried out with the 3D edge plasma fluid and kinetic neutral code EMC3-Eirene in ASDEX Upgrade. For this, we have added the prescribed drift terms to the EMC3 equations and verified the 3D code results against the analytical ones in cylindrical geometry. The edge plasma potential derived from the experiments is used to calculate the drift velocities, which are then treated as input fields in the code to obtain the final density distributions. Our simulation results are in good agreement with the experiments

    What makes for prize-winning television?

    Get PDF
    We investigate the determinants of success in four international television awards festivals between 1994 and 2012. We find that countries with larger markets and greater expenditure on public broadcasting tend to win more awards, but that the degree of concentration in the market for television and rates of penetration of pay-per-view television are unrelated to success. These findings are consistent with general industrial organisation literature on quality and market size, and with media policy literature on public service broadcasting acting as a force for quality. However, we also find that ‘home countries’ enjoy a strong advantage in these festivals, which is not consistent with festival success acting as a pure proxy for television quality
    corecore