109 research outputs found

    Pattern of presenting complaints recorded as near-drowning events in emergency departments: a national surveillance study from Pakistan.

    Get PDF
    Background: Drowning is a heavy burden on the health systems of many countries, including Pakistan. To date, no effective large-scale surveillance has been in place to estimate rates of drowning and near-drowning in Pakistan. The Pakistan National Emergency Department Surveillance (Pak-NEDS) study aimed to fill this gap. Method: Patients who presented with a complaint of ā€œnear-drowningā€ were analyzed to explore patterns of true near-drowning (unintentional) and intentional injuries that led to the ā€œnear-drowningā€ complaint. Bivariate analysis was done to establish patterns among patients treated in emergency departments, including socio-demographic information, injury-related information, accompanying injuries, and emergency department resource utilization. Result: A total of 133 patients (0.2% of all injury patients) with ā€œnear-drowningā€ as presenting complaints were recorded by the Pak-NEDS system. True near-drowning (50.0%) and intentional injuries that led to ā€œnear-drowningā€ complaints (50.0%) differed in nature of injuries. The highest proportion of true near-drowning incidents occurred among patients aged between 25-44 years (47.5%), and among males (77.5%). True near-drowning patients usually had other accompanying complaints, such as lower limb injury (40.0%). Very few patients were transported by ambulance (5.0%), and triage was done for 15% of patients. Eleven (27.5%) true near-drowning patients received cardiopulmonary resuscitation. Conclusion: There was major under-reporting of drowning and near-drowning cases in the surveillance study. The etiology of near-drowning cases should be further studied. Patients who experienced non-fatal drownings were more commonly sent for medical care due to other accompanying conditions, rather than near-drowning event itself. There is also need for recognizing true near-drowning incidents. The results of this study provide information on data source selection, site location, emergency care standardization, and multi-sector collaboration for future drowning prevention studies

    A versatile element for gene addition in bacterial chromosomes

    Get PDF
    The increasing interest in genetic manipulation of bacterial host metabolic pathways for protein or small molecule production has led to a need to add new genes to a chromosome quickly and easily without leaving behind a selectable marker. The present report describes a vector and four-day procedure that enable site-specific chromosomal insertion of cloned genes in a context insulated from external transcription, usable once in a construction series. The use of rhamnose-inducible transcription from rhaBp allows regulation of the inserted genes independently of the commonly used IPTG and arabinose strategies. Using lacZ as a reporter, we first show that expression from the rhamnose promoter is tightly regulatable, exhibiting very low leakage of background expression compared with background, and moderate rhamnose-induced expression compared with IPTG-induced expression from lacp. Second, the expression of a DNA methyltransferase was used to show that rhamnose regulation yielded on-off expression of this enzyme, such that a resident high-copy plasmid was either fully sensitive or fully resistant to isoschizomer restriction enzyme cleavage. In both cases, growth medium manipulation allows intermediate levels of expression. The vehicle can also be adapted as an ORF-cloning vector

    Using shotgun sequence data to find active restriction enzyme genes

    Get PDF
    Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli. Among this set are genes encoding restriction enzymes which, when active in E. coli, lead to cell death by cleaving the E. coli genome at the restriction enzyme recognition sites. By analyzing shotgun sequence data sets we show that this is a reliable method to detect active restriction enzyme genes in newly sequenced genomes, thereby facilitating functional annotation. Active restriction enzyme genes have been identified, and their activity demonstrated biochemically, in the sequenced genomes of Methanocaldococcus jannaschii, Bacillus cereus ATCC 10987 and Methylococcus capsulatus

    Fused eco29kIR- and M genes coding for a fully functional hybrid polypeptide as a model of molecular evolution of restriction-modification systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The discovery of restriction endonucleases and modification DNA methyltransferases, key instruments of genetic engineering, opened a new era of molecular biology through development of the recombinant DNA technology. Today, the number of potential proteins assigned to type II restriction enzymes alone is beyond 6000, which probably reflects the high diversity of evolutionary pathways. Here we present experimental evidence that a new type IIC restriction and modification enzymes carrying both activities in a single polypeptide could result from fusion of the appropriate genes from preexisting bipartite restriction-modification systems.</p> <p>Results</p> <p>Fusion of <it>eco29kIR </it>and <it>M </it>ORFs gave a novel gene encoding for a fully functional hybrid polypeptide that carried both restriction endonuclease and DNA methyltransferase activities. It has been placed into a subclass of type II restriction and modification enzymes - type IIC. Its MTase activity, 80% that of the M.Eco29kI enzyme, remained almost unchanged, while its REase activity decreased by three times, concurrently with changed reaction optima, which presumably can be caused by increased steric hindrance in interaction with the substrate. <it>In vitro </it>the enzyme preferentially cuts DNA, with only a low level of DNA modification detected. <it>In vivo </it>new RMS can provide a 10<sup>2</sup>-fold less protection of host cells against phage invasion.</p> <p>Conclusions</p> <p>We propose a molecular mechanism of appearing of type IIC restriction-modification and M.SsoII-related enzymes, as well as other multifunctional proteins. As shown, gene fusion could play an important role in evolution of restriction-modification systems and be responsible for the enzyme subclass interconversion. Based on the proposed approach, hundreds of new type IIC enzymes can be generated using head-to-tail oriented type I, II, and III restriction and modification genes. These bifunctional polypeptides can serve a basis for enzymes with altered recognition specificities. Lastly, this study demonstrates that protein fusion may change biochemical properties of the involved enzymes, thus giving a starting point for their further evolutionary divergence.</p

    Comparison of indices of clinically meaningful change in child and adolescent mental health services: difference scores, reliable change, crossing clinical thresholds and ā€˜added valueā€™ - an exploration using parent rated scores on the SDQ

    Get PDF
    Background Establishing what constitutes clinically significant change is important both for reviewing the function of services and for reflecting on individual clinical practice. A range of methods for assessing change exist, but it remains unclear which are best to use and under which circumstances. Method This paper reviews four indices of change [difference scores (DS), crossing clinical threshold (CCT), reliable change index (RCI) and added value scores (AVS)] drawing on outcome data for 9764 young people from child and adolescent mental health services across England. Results Looking at DS, the t-test for time one to time two scores indicated a significant difference between baseline and follow up scores, with a standardised effect size of d = 0.40. AVS analysis resulted in a smaller effect size of 0.12. Analysis of those crossing the clinical threshold showed 21.2% of cases were classified as recovered, while 5.5% were classified as deteriorated. RCI identified 16.5% of cases as showing reliable improvement and 2.3% of cases as showing reliable deterioration. Across RCI and CCT 80.5% of the pairings were exact (i.e., identified in the same category using each method). Conclusions Findings indicate that the level of agreement across approaches is at least moderate; however, the estimated extent of change varied to some extent based on the index used. Each index may be appropriate for different contexts: CCT and RCI may be best suited to use for individual case review; whereas DS and AVS may be more appropriate for case-mix adjusted national reporting

    Cleavage of a model DNA replication fork by a methyl-specific endonuclease

    Get PDF
    Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death

    Type I restriction enzymes and their relatives

    Get PDF
    Type I restriction enzymes (REases) are large pentameric proteins with separate restriction (R), methylation (M) and DNA sequence-recognition (S) subunits. They were the first REases to be discovered and purified, but unlike the enormously useful Type II REases, they have yet to find a place in the enzymatic toolbox of molecular biologists. Type I enzymes have been difficult to characterize, but this is changing as genome analysis reveals their genes, and methylome analysis reveals their recognition sequences. Several Type I REases have been studied in detail and what has been learned about them invites greater attention. In this article, we discuss aspects of the biochemistry, biology and regulation of Type I REases, and of the mechanisms that bacteriophages and plasmids have evolved to evade them. Type I REases have a remarkable ability to change sequence specificity by domain shuffling and rearrangements. We summarize the classic experiments and observations that led to this discovery, and we discuss how this ability depends on the modular organizations of the enzymes and of their S subunits. Finally, we describe examples of Type II restrictionā€“modification systems that have features in common with Type I enzymes, with emphasis on the varied Type IIG enzymes

    Restriction Enzymes in Microbiology, Biotechnology and Biochemistry

    Get PDF
    Since their discovery in the nineteen-seventies, a collection of simple enzymes termed Type II restriction endonucleases, made by microbes to ward off viral infections, have transformed molecular biology, spawned the multi-billion dollar Biotechnology industry, and yielded fundamental insights into the biochemistry of life, health and disease. In this article we describe how these enzymes were discovered, and we review their properties, organizations and genetics. We summarize current ideas about the mechanism underlying their remarkable ability to recognize and bind to specific base pair sequences in DNA, and we discuss why these ideas might not be correct. We conclude by proposing an alternative explanation for sequence-recognition that resolves certain inconsistencies and provides, in our view, a more satisfactory account of the mechanism
    • ā€¦
    corecore