11,560 research outputs found
A study of thirty cases in which the primary cause of the problem was due to rejection in the home
Thesis (M.S.)--Boston University, 1944. This item was digitized by the Internet Archive
The Role of Attorney Fee Shifting in Public Interest Litigation
BACKGROUND: Brain tissue segmentation of white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) are important in neuroradiological applications. Quantitative Mri (qMRI) allows segmentation based on physical tissue properties, and the dependencies on MR scanner settings are removed. Brain tissue groups into clusters in the three dimensional space formed by the qMRI parameters R1, R2 and PD, and partial volume voxels are intermediate in this space. The qMRI parameters, however, depend on the main magnetic field strength. Therefore, longitudinal studies can be seriously limited by system upgrades. The aim of this work was to apply one recently described brain tissue segmentation method, based on qMRI, at both 1.5 T and 3.0 T field strengths, and to investigate similarities and differences. METHODS: In vivo qMRI measurements were performed on 10 healthy subjects using both 1.5 T and 3.0 T MR scanners. The brain tissue segmentation method was applied for both 1.5 T and 3.0 T and volumes of WM, GM, CSF and brain parenchymal fraction (BPF) were calculated on both field strengths. Repeatability was calculated for each scanner and a General Linear Model was used to examine the effect of field strength. Voxel-wise t-tests were also performed to evaluate regional differences. RESULTS: Statistically significant differences were found between 1.5 T and 3.0 T for WM, GM, CSF and BPF (p<0.001). Analyses of main effects showed that WM was underestimated, while GM and CSF were overestimated on 1.5 T compared to 3.0 T. The mean differences between 1.5 T and 3.0 T were -66 mL WM, 40 mL GM, 29 mL CSF and -1.99% BPF. Voxel-wise t-tests revealed regional differences of WM and GM in deep brain structures, cerebellum and brain stem. CONCLUSIONS: Most of the brain was identically classified at the two field strengths, although some regional differences were observed
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
Post-hoc explanations of machine learning models are crucial for people to
understand and act on algorithmic predictions. An intriguing class of
explanations is through counterfactuals, hypothetical examples that show people
how to obtain a different prediction. We posit that effective counterfactual
explanations should satisfy two properties: feasibility of the counterfactual
actions given user context and constraints, and diversity among the
counterfactuals presented. To this end, we propose a framework for generating
and evaluating a diverse set of counterfactual explanations based on
determinantal point processes. To evaluate the actionability of
counterfactuals, we provide metrics that enable comparison of
counterfactual-based methods to other local explanation methods. We further
address necessary tradeoffs and point to causal implications in optimizing for
counterfactuals. Our experiments on four real-world datasets show that our
framework can generate a set of counterfactuals that are diverse and well
approximate local decision boundaries, outperforming prior approaches to
generating diverse counterfactuals. We provide an implementation of the
framework at https://github.com/microsoft/DiCE.Comment: 13 page
One Nation Divided by Slavery: Remembering the American Revolution While Marching Toward the Civil War
A Contentious Divide: The Limits of Nationalism in Antebellum America
To understand the peculiarity, complexity, and ultimately the failure of American nationalism in the nineteenth century, go back to the monuments and traces of the most important events of the eighteenth century. Mount t...
HEAT TRANSFER WITH LAMINAR FLOW IN CONCENTRIC ANNULI WITH CONSTANT AND VARIABLE WALL TEMPERATURE AND HEAT FLUX
Heat transfer with laminar flow in concentric annuli with constant and variable wall temperature and heat flu
- …