17,487 research outputs found
Quantum Sampling Problems, BosonSampling and Quantum Supremacy
There is a large body of evidence for the potential of greater computational
power using information carriers that are quantum mechanical over those
governed by the laws of classical mechanics. But the question of the exact
nature of the power contributed by quantum mechanics remains only partially
answered. Furthermore, there exists doubt over the practicality of achieving a
large enough quantum computation that definitively demonstrates quantum
supremacy. Recently the study of computational problems that produce samples
from probability distributions has added to both our understanding of the power
of quantum algorithms and lowered the requirements for demonstration of fast
quantum algorithms. The proposed quantum sampling problems do not require a
quantum computer capable of universal operations and also permit physically
realistic errors in their operation. This is an encouraging step towards an
experimental demonstration of quantum algorithmic supremacy. In this paper, we
will review sampling problems and the arguments that have been used to deduce
when sampling problems are hard for classical computers to simulate. Two
classes of quantum sampling problems that demonstrate the supremacy of quantum
algorithms are BosonSampling and IQP Sampling. We will present the details of
these classes and recent experimental progress towards demonstrating quantum
supremacy in BosonSampling.Comment: Survey paper first submitted for publication in October 2016. 10
pages, 4 figures, 1 tabl
Reference System Description
Several candidate antenna configurations are evaluated in terms of weight, efficiency, and structural rigidity. Particular emphasis is given to the waveguide slot array and its application to solar power satellites SPS. The electronic aspects of an SPS specific waveguide slot array are defined
Coherent state LOQC gates using simplified diagonal superposition resource states
In this paper we explore the possibility of fundamental tests for coherent
state optical quantum computing gates [T. C. Ralph, et. al, Phys. Rev. A
\textbf{68}, 042319 (2003)] using sophisticated but not unrealistic quantum
states. The major resource required in these gates are state diagonal to the
basis states. We use the recent observation that a squeezed single photon state
() approximates well an odd superposition of coherent
states () to address the diagonal resource
problem. The approximation only holds for relatively small and hence
these gates cannot be used in a scaleable scheme. We explore the effects on
fidelities and probabilities in teleportation and a rotated Hadamard gate.Comment: 21 pages, 12 figure
Effective slip boundary conditions for flows over nanoscale chemical heterogeneities
We study slip boundary conditions for simple fluids at surfaces with
nanoscale chemical heterogeneities. Using a perturbative approach, we examine
the flow of a Newtonian fluid far from a surface described by a heterogeneous
Navier slip boundary condition. In the far-field, we obtain expressions for an
effective slip boundary condition in certain limiting cases. These expressions
are compared to numerical solutions which show they work well when applied in
the appropriate limits. The implications for experimental measurements and for
the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure
Development of a drive system for a sequential space camera contract modification 4(S)
The brush type dc motor and clutch were eliminated from the design of the 16 mm space sequential camera design and replaced by an electronically commutated motor. The new drive system reduces the current consumption at 24 fps to 220 mA. The drive can be programmed and controlled externally from the multipurpose programmable timer/intervalometer, as well as being controlled locally from the camera
Discovery of a new INTEGRAL source: IGR J19140+0951
IGR J19140+0951 (formerly known as IGR J19140+098) was discovered with the
INTEGRAL satellite in March 2003. We report the details of the discovery, using
an improved position for the analysis. We have performed a simultaneous study
of the 5-100 keV JEM-X and ISGRI spectra from which we can distinguish two
different states. From the results of our analysis we propose that IGR
J19140+0951 is a persistent Galactic X-ray binary, probably hosting a neutron
star although a black hole cannot be completely ruled out.Comment: 4 pages, 4 figures. Accepted for publication in A&A
Optical properties in the UV and visible spectral region of organic acids relevant to tropospheric aerosols
International audienceRefractive and absorption indices in the UV and visible region of selected aqueous organic acids relevant to tropospheric aerosols are reported. The acids investigated are the aliphatic dicarboxylic acids oxalic, malonic, tartronic, succinic and glutaric acid. In addition we report data for pyruvic, pinonic, benzoic and phthalic acid. To cover a wide range of conditions we have investigated the aqueous organic acids at different concentrations spanning from highly diluted samples to concentrations close to saturation. The density of the investigated samples is reported and a parameterisation of the absorption and refractive index that allows the calculation of the optical constants of mixed aqueous organic acids at different concentrations is presented. The single scattering albedo is calculated for two size distributions using measured and a synthetic set of optical constants. The results show that tropospheric aerosols consisting of only these organic acids and water have a pure scattering effect
Scattering of second sound waves by quantum vorticity
A new method of detection and measurement of quantum vorticity by scattering
second sound off quantized vortices in superfluid Helium is suggested.
Theoretical calculations of the relative amplitude of the scattered second
sound waves from a single quantum vortex, a vortex ring, and bulk vorticity are
presented. The relevant estimates show that an experimental verification of the
method is feasible. Moreover, it can even be used for the detection of a single
quantum vortex.Comment: Latex file, 9 page
- …