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In this paper we explore the possibility of fundamental tests for coherent-state optical quantum computing
gatesfT. C. Ralphet al., Phys. Rev. A68, 042319s2003dg using sophisticated but not unrealistic quantum
states. The major resource required in these gates is a state diagonal to the basis states. We use the recent
observation that a squeezed single-photon statefSsrdu1lg approximates well an odd superposition of coherent
statessual− u−ald to address the diagonal resource problem. The approximation only holds for relatively small
a, and hence these gates cannot be used in a scalable scheme. We explore the effects on fidelities and
probabilities in teleportation and a rotated Hadamard gate.
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I. INTRODUCTION

It was long believed that optical quantum computing
would require enormous nonlinear interactions between op-
tical modes in order to be a viable technology. This was
mainly due to the requirement that the presence of a single
photon in an optical mode must control the path of another
photonssee, for example,f1gd. However, it has been shown
that linear interactions combined with post-selective mea-
surements induce enough nonlinearity so that in principle
one can perform quantum computations efficientlyf2g. The
fundamental gates in this scheme work nondeterministically,
but this can be overcome by quantum gate teleportationf3g.
To achieve near deterministic teleportation by linear interac-
tions and post-selection requires a large linear network in-
volving many modes prepared in single-photon statesf2g.

More recently an alternative proposal which uses two co-
herent states and superpositions thereofsi.e., catlike statesd
for quantum computing has emergedf4g. Provided the two
coherent states are sufficiently well seperated in phase space,
the fundamental gates of this scheme are near deterministic.
The gates described in this scheme consume equal superpo-
sitions of coherent states as a resource. Generation of such
states at the large separations required is a formidable chal-
lenge. However, as has been recently reportedf5g, superpo-
sitions of coherent states that are not so well separated are
well approximated by squeezed single-photon states. The
photon-subtracted squeezed state is equivalent to the
squeezed single-photon state and also well approximates the
superposition of two coherent statesf6g. Recently the
photon-subtracted squeezed state has been generated experi-
mentally f7g, albeit with quite low fidelities due to losses in
the experimental device. Here, we explore the possibility of
constructing some of the gates outlined inf4g in this inter-
mediate regime using the squeezed single photon as the
superposition-state resource. We find it is possible to see the
desired effects with fairly highsthough not unitd visibility.

II. SQUEEZED SINGLE PHOTON AS A SUPERPOSITION
OF COHERENT STATES

It is shown inf4g that one can construct a universal set of
gates used for quantum computing encoding a two-level sys-
tem in coherent statesual and u−al provided a is large
enoughsi.e., a<2d. One requirement for constructing these
gates is a source of states which are diagonal superpositions
of the basis states: that is, states of the form

ual ± u− al. s1d

Following f4g we will call these states “cat states.” The state
with a plus sign is of even parity, so we will call it an even
cat state, and the minus sign is of odd party, so we will call
it an odd cat state. The coherent amplitudea will sometimes
be referred to as the size of the cat state.

A recent observation is that the odd cat state is well ap-
proximated by a “squeezed” single-photon statef5g. The
squeezed single-photon state is of a simple analytic form so
that the state can be written down and quantities of interest
can be calculated exactly. In terms of a vacuum state and
annihilation and creation operators the state can be written

Ŝsrdu1l = Ŝsrdâ†u0l, s2d

where Ŝsrd=esr/2dsâ2−â†2d called the “single-mode squeezing”
operator or just the “squeezing operator.” Herer is a real
parameter. This operator reduces the noise seen in a quadra-
ture measurement of the oscillator in the vacuum state by a
factor ofe−r. Becauser is assumed real, it is possible to show
sseef8gd

â†Ŝsrd = Ŝsrdâ†coshr + Ŝsrdâ sinhr s3d

and hence

â†Ŝsrdu0l = scoshrdŜsrdâ†u0l. s4d

The squeezing operator applied to the vacuum state gener-
ates the squeezed vacuum states. They can be expanded in
terms of photon number states as*Electronic address: lund@physics.uq.edu.au
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Ŝsrdu0l = o
n=0

`
s− tanhrdn

Îcoshr

s2n ! d1/2

2nn!
u2nl. s5d

Using Eqs. s4d and s5d one obtains the expansion for a
squeezed single photon:

Ŝsrdu1l = o
n=0

`
s− tanhrdn

scoshrd3/2

Îs2n + 1d!
2nn!

u2n + 1l. s6d

The “fidelity” is a measure of how close two states are. For-
tunately all reference states that we wish to compare other
states to will be pure states. So here we callkcur̂ucl the
fidelity whereucl is the desired pure state andr̂ is the den-
sity operator of the state actually generated. Computing the
fidelity of the state in Eq.s6d with that of an odd cat state
with sizea one obtains

Fsa,rd =
e−a2

2s1 − e−2a2
d

4a2

scoshrd3e−a2 tanhr . s7d

If one wishes to produce an odd cat state of sizea si.e., a is
a given constantd, then the fidelity is maximized whenr sat-
isfies

r = arccoshSÎ1

2
+

1

6
Î9 + 4a2D . s8d

Substituting this relationship into Eq.s7d reduces it to a func-
tion for fidelity which depends ona alone. This is the high-
est possible fidelity for a cat state of sizea given that it was
produced using the squeezed single-photon state. This func-
tion is plotted foraP f0,2g in Fig. 1. The high fidelity fora
small is due to the odd cat state being dominated by its
lowest-photon-number state; i.e., the odd cat state fora very
small contains only a single photon. Whena=0 is substi-
tuted into Eq.s8d, the result isr =0. Hence no squeezing is
performed and the state is just a single photon. These two
states are identical giving unit fidelity. The fidelity remains
high for a small as the next dominant term in the odd cat
state for smalla is the three-photon term. The squeezing of
the single photon will coherently add pairs of photons to the
single-photon state. Hence the ratio of the one- and three-

photon state coefficients can be matched well by adjusting
the squeezing level, provided that the next termsthe five-
photon termd remains small. Eventually asa increases these
higher terms cannot be matched and the fidelity falls. Asa
→` the fidelity tends towards zero.

At this point it is worthwhile to note that the squeezed
single-photon state does not need to be generated by the
most direct and obvious procedure implied by the name. Tak-
ing the adjoint of Eq.s3d and rearranging terms leads to

âŜsrd = Ŝsrdâ coshr + Ŝsrdâ† sinhr , s9d

and applying this operator to the vacuum state givesf9g

âŜsrdu0l = ssinhrdŜsrdâ†u0l. s10d

Equations10d shows that, up to a normalization constant, a
squeezed vacuum with a photon subtracted is equivalent to a
squeezed single-photon state. Photon subtraction is more
convenient experimentally and can be achieved conditionally
by passing the squeezed vacuum through a weakly reflecting
beam splitter and looking for a single-photon count at the
reflected portf7g.

III. COHERENT-STATE QUANTUM COMPUTING
AND TELEPORTATION

A. Coherent-state quantum computing

As stated above one may consider the statesual and
u−al to be a basis for a two-level quantum system. If the two
states are sufficiently distinguishablesi.e., a.2d, one may
also consider them to be an orthonormal basis for a two-level
system f4g to a very good approximation. This two-level
quantum system is suitable for encoding quantum binary dig-
its squbitsd. The phase of the coherent amplitudesi.e., the
plus or minus signd is utilized to encode information. It is
shown inf4g how one can build near-deterministic gates to
perform universal quantum computation using these states as
qubits. We will call the procedures described inf4g used for
universal quantum computing collectively as coherent-state
quantum computingsCSQCd.

The one main resource that CSQC requires is a source of
states diagonal to the basis statessi.e., the even or odd cat
stated. One procedure which is crucial to gate operation is the
ability to perform teleportation on qubits in this encoding.
This can be performed by using an odd cat state as shown
later in this section.

Generating states diagonal to the coherent-state basis with
large coherent amplitude in a propagating optical mode is a
formidable challenge. However, as we have observed the
squeezed single photon is a good approximation to the diag-
onal states provideda is not too large. Generation of
squeezed single-photon states seems more experimentally
accessible than alternative proposalsssee f5g in the short
term motivating us to consider if in principle demonstrations
of basic gate operations are possible using squeezed single
photons as our resource stated. For example, considera=1.

From Fig. 1 we observe thatŜsrdu1l is still an excellent ap-
proximation to a cat state of this size while the overlap be-

FIG. 1. The maximum possible fidelity obtained using the
squeezed single photon as a source of odd cat states with a given
sizea. This given size is varied along thex axis.
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tween ual and u−al has already fallen touk−a ualu2<0.02.
This suggests that interesting tests of principle can be carried
out in this “middle ground.”

B. Teleportation of coherent-state qubits

The most basic gate in the CSQC schemesafter aX̂ gate
which is simply a phase shift ofad is the teleportation gate.

This gate is also crucial in implementing aẐ gate and re-
quired “projections” onto the space spanned by the two states
ual and u−al. So let us consider the properties of this gate in
more detail.sInitially we will be considering exact superpo-
sitions of coherent states and not the squeezed single-photon
approximation.d

1. CSQC Bell-state generation and Bell-state measurements

In order to perform teleportation one must be able to cre-
ate a Bell state and perform a measurement in the Bell basis
f10g. Following f11g when two modes of the electromagnetic
sEMd field are combined at an asymmetric 50:50 beam split-
ter, the action written in terms of the Bell states using the
encoding above is

ua,al + u− a,− al → u0l ^ suÎ2al + u− Î2ald, s11d

ua,al − u− a,− al → u0l ^ suÎ2al − u− Î2ald, s12d

ua,− al + u− a,al → suÎ2al + u− Î2ald ^ u0l, s13d

ua,− al − u− a,al → suÎ2al − u− Î2ald ^ u0l, s14d

where the notationua ,bl;ual ^ ubl has been used and nor-
malization factors have been ignored. This transformation
follows from the linear evolution of quantum states and the
expected addition and subtraction of coherent-state ampli-
tudes at a beam splitter. So the four Bell states can be dis-
tinguished by measuring one mode to be the vacuum and
then determining if the other mode contains an odd or even
state. For example, the first state is chosen if “zero” is mea-
sured in the first mode and an even number in the second due
to the even cat state present in this mode. The second state is
selected when counting “zero” and “odd,” the third state
“even” and “zero,” and the fourth state “odd” and “zero”
count pairs. Note that aneven number of photons includes
zero.This means that a “zero” and “zero” measurement pair
can occur for the first and third states, leaving them undis-
tinguished. So if “even” excludes the possibility of zero, then
the states can be distinguished but when a “zero” and “zero”
measurement occurs the measurement has failed. This is a
consequence of the nonorthogonality of the qubit encoding.
When not working in the range of the squeezed single pho-
ton approximation this “zero” and “zero” possibility can be
made arbitrarily smaller by makinga large.

To perform teleportation one requires a prepared state in
one of the four Bell states. If one reverses the procedure of
the Bell-state measurement, then it can be seen that this takes
a nonentangled state to an entangled state. With the usage of
the squeezed single-photon state in mind, one could use this

state and the inverse of Eq.s12d to create the entangled Bell
state. A Bell-state measurement is then performed on the
input qubit and one-half of this entangled state as just de-
scribed. A schematic diagram of this configuration is shown
in Fig. 2.

As an example of how the entire state evolves during this
process we can write out the composite system of an arbi-
trary qubit and the Bell state from Eq.s12d as

msua,a,al − ua,− a,− ald + nsu− a,a,al − u− a,− a,− ald.

s15d

Here the notation introduced above has been used to com-
bine modes and the entanglement is present in the second
and third modes. The modes in this state correspond to the
top sfirst labeld, middle ssecond labeld, and bottomsthird
labeld modes in Fig. 2. The teleportation procedure now re-
quires a Bell basis measurement on the qubit and one-half of
the entangled pair. As explained this is done by applying a
50:50 beam splitter on the first two modes:

msu0,Î2a,al − uÎ2a,0,−ald + nsu− Î2a,0,al

− u0,−Î2a,− ald. s16d

Then if the Bell state in Eq.s12d is projected onto by per-
forming au0,oddl number measurement, the state in the third
mode is

mual + nu− al s17d

and successful teleportation has occurred. Note that to dis-
tinguish theu0,oddl states from theu0,evenl states requires
very efficient photon number resolving measurements. The
loss of a single photon will change the odd result to an even
result.

2. Corrections and probability of success

The other Bell basis measurement events can be used

boosting the overall probability of success. However,X̂ sbit

flipd andẐ sphased corrections must be applied to the output

depending on which result was obtained. TheX̂ correction

FIG. 2. A schematic diagram of the teleporter. The lower two
modes after the first beam splitter contain the entangled pair. The
top mode contains the qubit. The Bell-state measurement is made
on one-half of the entanglement and the qubit by the second beam
splitter. Only one of the Bell-state measurements is accepted here
by the zero, odd count. When this occurs the lower mode contains
the input qubit without any corrections needed.
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can be applied by applying ap phase shift to the output

mode. TheẐ correction is more difficult and needs to be
applied when an even cat state is detected in the Bell-state
analysis. One possible solution proposed inf4g is to apply

teleportation again in the hope that anotherẐ correction is

required, canceling out theẐ applied in the initial teleporta-
tion.

To estimate the overall probability of success of concat-
enated teleportations one can sum over the probabilities of
events that lead to successful teleportation. Here we will con-
sider the case where the coherent-state Bell state is exact. As
shown above, results of the formu0,oddl require no correc-
tion. It can be shown that results of the formuodd,0l require
a X correction which we will assume can be implemented by
flipping the reference phase. As shown inf12g the total prob-
ability of these resultssPoddd is 1

2, independent ofa. Note
that this probability is the maximum probability of success
for teleportation using single-photon encodings. The results

u0,evenl and ueven,0l requireẐ and X̂Ẑ corrections, respec-
tively. If the even number is zero, then the two cannot be
distinguished and the input state cannot be recovered. This
happens with probabilityPfail which can be shown to be

U e−a2Î2 − 2e−2a2
sm + nd

Îs2 − 2e−4a2
dsumu2 + unu2 + 2e−2a2

Rehnm * jd
U2

, s18d

which can be shown to be less than or equal to1
2. Example

plots of this probability over all possible inputs states fora
=0.5, 1, and 2 are shown in Fig. 3. The probability that
remains must be attributed to the two even results in the
Bell-state measurement which now can be distinguished. We
will call the probability of obtaining an even resultPeven

which must be1
2 −Pfail by the argument just made.

The probability that an “easy” correctionsi.e., the identity

or anX̂d need be applied to teleportation isPodd. If, however,
one obtains an even count with probabilityPeven, then all is
not lost. When this state is teleported again, if an even result
is obtained again with probabilityPeven, then the output is an

easy correction away from performing teleportation. This is a

result ofẐ2 being the identity. The total probability of getting
two consecutive even results isPeven

2 . However, one may
have obtained an odd result before finally getting the second
even. This will occur with probabilityPevenPoddPeven. So if
teleportation can be performed repeatedly, then the probabil-
ity of obtaining successful teleportation which is an easy
correction away from the input state will approach

Psucc= Podd+ o
n=0

`

PevenPodd
n Peven. s19d

SincePodd,1, the sum evaluates to

Psucc= Podd+
Peven

2

1 − Podd
. s20d

SincePodd=
1
2 andPeven=

1
2 −Pfail, this expression is

Psucc= 1 − 2sPfail − Pfail
2 d. s21d

If only a set maximum number of teleportations are allowed,
then Eq. s19d is reduced by removing positive quantities
from the sum. HencePsucc is the maximum probability of
success using this method. From the note abovePfail is less
than 1

2 for all valuesa. This means thatPsucc is greater than
or equal to1

2. As Psuccvaries over all inputs states it is mini-
mized for some particular input state given a particulara.
This minimum can be traced asa increases as is done in Fig.
4. This shows that in principle this method is capable of
qubit teleportation using linear optics and photodetection
with a probability greater than12 for all a. When a=1 the
minimum of Psucc is 0.67 which is indicative of the middle
ground nature of coherent-state encoding at this level.

C. Teleportation with the squeezed single photon

In order to perform teleportation in CSQC a source of odd
coherent-state superpositions is required. Here we will ana-
lyze the response of the teleportation fidelity when the
squeezed single photon is used where an odd coherent-state

FIG. 3. sColor onlined The probability of fail-
ure of the teleportation protocolsPfaild described
in the text as per Eq.s18d for a=0.5 sad, a=1 sbd,
and a=2 scd. The input state is of the formm
=cosu andn=eif sinu. Note thatPfail ,

1
2.
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superposition is required. The teleportation fidelity is ex-
pected to decrease from unity because the fidelity of the odd
coherent-state superpotion with the squeezed single photon is
less than unity. We will also consider the effects of losses in
the photon counting detectors and will show that this loss
dominates any decrease in fidelity as opposed to the decrease
from using the squeezed single photon.

1. Squeezed single photon

Figure 5 shows the results of a numerical calculation of
the fidelity and probability of teleportation when a split
squeezed single photon is used as the entanglement resource
over a range of possible input states. The input states are
defined by the two anglesu andf as

ufinl = cosuual = eif sinuu− al. s22d

The fidelity of teleportation for a given input state is the
overlap of the input state and the output state squared. The
plot on the right on this figure shows the probability of ob-
taining the photon number detection result that results in the
state which requires no corrections. The other three Bell-
state measurements could possibly be accepted butX andZ
corrections must be applied.

2. Introduction of loss

This protocol relies on perfect photon number detection to
perform the teleportation. Here we analyze the effects on
teleportation fidelity when the detectors are inefficient while
continuing to use the split squeezed single photon as the
source of entanglement. The results shown in Fig. 5 show the
fidelity of teleportation as a function of the input state as per
Eq. s22d on the left and the probability of performing the
teleportation without needing a correction on the right. Fig-
ure 6 shows results in the same format as Fig. 5 but for the
case when detection is 90% efficient. Note here that the
minimum fidelity over all input states has decreased and the
probability of a detection result varies much more for the
different input states. The increase in probability of success
for certain states in the 90% efficient scenario is an indica-
tion of high probability two photon terms in the detection
corrupting the measurement. The output state of the tele-
porter will be of opposite parity to the desired state when a

two photon count is included accidentally. Hence this high
probability corresponds to a drop in the fidelity of the output.
The minimum fidelity over all input states is plotted as a
function of efficiency in Fig. 7.

IV. SUPERPOSITION GATE

A uniquely quantum mechanical effect in quantum com-
putation is being able to move from the qubit basis states into
a superposition of these basis states. An example of a gate
which performs an operation of this kind is the Hadamard
gate. The Hadamard gate in the coherent state encoding is
written as

ual →Î1

2
sual + u− ald,

u− al →Î1

2
sual − u− ald.

This transformation is nonunitary as it takes nonorthogonal
states to orthogonal states. To implement this gate we use the
methods described inf4g. This requires moving outside of
the qubit spacesi.e., the space spanned by superpositions of
ual and u−ald and then projecting back to achieve required

FIG. 4. The minimum success probabilitysPsuccd over all input
states as a function ofa.

FIG. 5. sColor onlined A plot of the teleportation fidelitysad and
probability sbd as a function of the input state. The angles of the
input state are defined in Eq.s22d. The anglesu andf are actually
periodic in 2p but only half of this region is shown as the remainder
is just the mirror image of the plot when continued. The size of the
coherent-state qubits isa=1 which means the entanglement is cre-
ated by a cat state of sizea=Î2.
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phase factors. The projection onto this subspace is achieved
by teleporting the displaced state.

A. Gate specification

The procedure to create the Hadamard gate using the
coherent-state encoding proceeds as follows. Writing out a
general state with this entanglement as per Eq.s15d and then

applying a control signscsignd gate leads to the state

msua,a,al − ua,− a,− ald + nsu− a,a,al + u− a,− a,− ald.

s23d

Projecting the first and second modes onto the odd parity cat
state results in the state

msual + u− ald + ns− ual + u− ald. s24d

Applying a bit flip gate orX̂ gate leads to

msual + u− ald + nsual − u− ald, s25d

which is the Hadamard transformation. Referencef4g shows
a way in which to build aCSIGN gate using this encoding;
however, it is assumed that the coherent states are well sepa-
rated. TheCSIGN gate is a symmetric beam splitter with a
reflectivity chosen so that the coherent states displace each
other in such a way that projecting back onto the cat-state
basis results in a sign change for the appropriate state. This
does not apply directly to the regime of small cat state to
which the squeezed single photons are good approximations.
However, this scheme can be used as a guide on how to
construct a gate that may apply for small cat state given
certain restrictions.

Starting from Eq.s15d and applying a symmetric beam
splitter to the first two modes leaves the state as

msuaeiu,aeiu,al − uae−iu,− ae−iu,− ald + nsu− ae−iu,ae−iu,al

− u− aeiu,− aeiu,− ald. s26d

Now one should perform a projection onto the odd cat state
in modes 1 and 2. As shown inf4g provided the displace-
ments are not too large, one can perform photon counting
with only small errors. As a special case of this if only the
one-photon term is accepted, then the state transforms to

e−uau2a2msei2uual + e−i2uu− ald

− e−uau2a2nse−i2uual + ei2uu− ald. s27d

Plugging in u=p /8, then up to a global phase factor and
ignoring the normalization the transformation can be written

mual + nu− al → sm + indual − sim + ndu− al. s28d

This transformation is equivalent to a Hadamard transforma-

tion provided one can performẐ operations. That is, if the
transformation

mual + nu− al → mual − inu− al s29d

is applied before and after the transformation in Eq.s28d,
then a Hadamard transformation is obtained. The transforma-
tion in Eq. s28d is not the Hadamard operation but is still
very useful as it takes qubit basis states into superpositions
of both qubit basis states. We will call the transformation in
Eq. s28d the rotated Hadamardtransformation which we will

denote asH̄
ˆ
. Note that this transformation is exact for any

size of coherent states as long as the photon number mea-
surement obtains two single-photon counts.

FIG. 6. sColor onlined This figure shows plots of the same style
as Fig. 5 but the detectors in this simulation are 90% efficient.

FIG. 7. This figure shows a plot of the minimum fidelity over all
possible input states within the space of qubits to the teleporter as a
function of detector efficiency.

A. P. LUND AND T. C. RALPH PHYSICAL REVIEW A71, 032305s2005d

032305-6



B. Probability of success

The probability of obtaining a photon count ofm photons
in one andn in the othersi.e., projecting onto the stateun,mld
is

S 1 − 2 Rehm * ne−2uau2j

s1 + 2 Rehm * ne−2uau2jds1 − e−4uau2d
DSa2sn+mde−2uau2

n ! m!
D .

s30d

The important term here is the one on the right involvingn
and m. The probability falls as the factorial of the photon
number but also asa2 to the power of the sum of the two
photon numbers. So fora,1 there is a major advantage
when losses are considered as the probability of higher-
photon-number terms already reduces quickly as well as hav-
ing the advantage of the detector efficiency to reject error
counts.

V. COMBINING GATES

A. Candidate computation

One of the simplest nontrivial computation that can be
performed with a qubit is two Hadamard gates with a phase
shift between them. This arrangement is shown in Fig. 8ssee
also, Fig. 9d. Detection in the computational basis at the end
of this experiment will reveal different probabilities when the
phase shift between the two Hadamard gates is changed. The
variation of probability with respect to the phase shift is a
uniquely quantum mechanical property, hence verifying the
existence of a quantum bit. This kind of experiment is
equivalent to an interferometer where the path length be-
tween the two arms can be varied. Hence a plot of the prob-
ability of detecting one of the basis states with respect to the
phase shift is called a fringe. With perfect qubits the period
of the fringe should bep and the visibility should be unity as

the probability should drop to zero for some phase. The vis-
ibility for this fringe is defined here as

V =
Pmax− Pmin

Pmax+ Pmin
. s31d

Since entanglement generated by a squeezed photon state is
not exactly a cat state, then the visibility is expected to be
slightly less than unity.

B. Implementing the computation using CSQC

The exact Hadamard transformation is not available when
considering the small cat state generated by the squeezed

single-photon state. However, theH̄
ˆ

gate as described previ-
ously is avaliable. In this numerical calculation, the first
Hadamard gate has the effect of preparing the stateu0l+ u1l.
Using the squeezed single-photon states, the stateual− u−al
can be generated, so this state will be used instead. This
removes the necessity for the first Hadamard gate. The phase
shift can be implemented by displacing the cat state in the
imaginary direction and then projecting back into the com-

putational basis. It is hoped that the detection in theH̄
ˆ

gate
will perform this projection when the appropriate measure-

ment results is achieved. After this displacement theH̄
ˆ

gate
is applied. With an ideal odd cat state and an ideal phase shift
the input state to the rotated Hadamard is

FIG. 8. A schematic drawing of a simple, nontrivial experiment
involving a qubit. The input state can be any qubit but will be set to
the stateu1l throughout. The boxes represent the Hadamard gates
and the triangle represents a phase shift between the qubits. The
output is detected in the computational basis.

FIG. 9. An experiment in the same spirit as the one in Fig. 8.
The cat-state producer is the squeezed single-photon state, the phase
shift is now a displacement, and the Hadamard is the rotated Had-
amard gate.

FIG. 10. sColor onlined The plots in this figure are in the same

style as Fig. 5 but are for theH̄
ˆ

gate with the coherent amplitude of
the qubits ata=1. Note that for such small coherent-state qubits the
squeezed single photon is very close to a cat state. This means that
the fidelity should be close to 1.
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ual − eiuu− al, s32d

ignoring normalization. After applying theH̄
ˆ

gate the state
transforms to

s1 − ieiudual − si − eiudu− al. s33d

When this state is measured in the coherent-state basis it
should give a sinusoidal probability response as the displace-
ment is changed. Ideally the probability of the two coherent
states should be equal whenu=0.

The measurement in the computational basis can be per-
formed by combining the signal which is a superposition of
ual and u−al with another signal prepared in the stateual on
a 50:50 beam splitter. The effect on either coherent state is

ualual → u0luÎ2al,

u− alual → u− Î2alu0l.

The two coherent states can now be distinguished by a mea-
surement on the two modes. If there are no photons in one
mode and one or more in the other mode, then the detection
has succeeded and by the mode in which nonzero photon
number occurred the sign of the coherent amplitude can be
determined. The measurement fails if zero photons are de-
tected in both modes. This occurs with a probability ofe−uau2

and will approach zero quickly asa grows. Also the detec-
tion need not require efficient detection. If a photon is lost,
the probability of the detection drops but no errors will oc-
cur.

The performance of this gate using the squeezed single-
photon states as cat states can be analyzed in a way similar to
the teleportation gate. Figure 10 shows the fidelity of the gate
compared to the expected output shown in Eq.s28d. The plot
on the right of this figure is the probability of the gate func-
tioning over the range of input states. This plot agrees well
with the prediction of thesn,md=s1,1d count used in Eq.

FIG. 11. sColor onlined Plots of the probability of detecting the
coherent statea at the output of the device shown in Fig. 9. The

nonsinusoidal nature of this function is due to the reliance of theH̄
ˆ

gate to project the displaced cat state back on to the computational
basis states. The plots are for a variety ofa :a=1 in sad, a=0.5 in
sbd, anda=0.3 in scd.

FIG. 12. sColor onlined This figure shows the probability that

the H̄
ˆ

gate gives a successful post-selection as a function of the
displaced input.
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s30d. Note that the probability of a successful detection de-
pends on the input state of the qubit. One could consider that
some sort of measurement has been made on the qubit as
different probabilities apply for different input statesssee
f13gd. However, this does not destroy the calculation as the
basis qubits have a nonzero overlap.

We also perform the numerical calculation for arrange-
ment depicted in Fig. 9 which should generate a sinusoidal
variation in the probability distribution of one of the basis
states at the output. The fringes which result from this simu-
lation are shown in Fig. 11. This plot shows the probability
of obtaining one particular coherent state using the detector
involving the mixing of the output state with a coherent state

described above. Note that the probability of theH̄
ˆ

gate func-
tioning is not included in this probability. It is shown in Fig.
12. The first thing to note is that the fringes are not sinu-

soidal in nature. This is due to the reliance of theH̄
ˆ

gate to
project the displaced cat state back into the computational
basis. However, the visibilities for each fringe can still be
calculated and are shown in the legend of each graph. The
multiple plots on each graph shows how the fringes change

as the detector efficiency of the detectors in theH̄
ˆ

gate
change. The fringe visibilities remain high for poor detectors
due to the large drop off of the photon counting events in the
detectors.

VI. CONCLUSION

We have shown in this paper that demonstrations of the
basic functionality of quantum computation gates based on
coherent-state quantum bits is within reach of current tech-
nology. Superpositions of coherent states with relatively
small amplitudes can be well approximated by the squeezed
single-photon state, and there has been recent experimental
progress in producing such statesf7g. Furthermore, gates
which use superpositions of coherent states as a resource can
utilize the squeezed single photon as this resource and still
function with high fidelities. The small coherent amplitudes
require some modification of gate operation, but basic func-
tionality can still be achieved. For the case of teleportation,
an improvement in efficiency over photonic systems can be
recognized even at the small amplitudes considered here
with success probabilities of 67% with over 99% fidelity
predicted. This is to be compared with the 50% success prob-
ability achieved with basic photonic systems.
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