110 research outputs found

    Experimental realization of a topological Anderson insulator

    Get PDF
    We experimentally demonstrate that disorder can induce a topologically non-trivial phase. We implement this “Topological Anderson Insulator” in arrays of evanescently coupled waveguides and demonstrate its unique features

    Synchronization, Diversity, and Topology of Networks of Integrate and Fire Oscillators

    Get PDF
    We study synchronization dynamics of a population of pulse-coupled oscillators. In particular, we focus our attention in the interplay between networks topological disorder and its synchronization features. Firstly, we analyze synchronization time TT in random networks, and find a scaling law which relates TT to networks connectivity. Then, we carry on comparing synchronization time for several other topological configurations, characterized by a different degree of randomness. The analysis shows that regular lattices perform better than any other disordered network. The fact can be understood by considering the variability in the number of links between two adjacent neighbors. This phenomenon is equivalent to have a non-random topology with a distribution of interactions and it can be removed by an adequate local normalization of the couplings.Comment: 6 pages, 8 figures, LaTeX 209, uses RevTe

    Quantum ergodicity for graphs related to interval maps

    Full text link
    We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.Comment: 20 pages, 1 figur

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    The Spatial Origin of a Perceptual Transition in Binocular Rivalry

    Get PDF
    When the left and the right eye are simultaneously presented with incompatible images at overlapping retinal locations, an observer typically reports perceiving only one of the two images at a time. This phenomenon is called binocular rivalry. Perception during binocular rivalry is not stable; one of the images is perceptually dominant for a certain duration (typically in the order of a few seconds) after which perception switches towards the other image. This alternation between perceptual dominance and suppression will continue for as long the images are presented. A characteristic of binocular rivalry is that a perceptual transition from one image to the other generally occurs in a gradual manner: the image that was temporarily suppressed will regain perceptual dominance at isolated locations within the perceived image, after which its visibility spreads throughout the whole image. These gradual transitions from perceptual suppression to perceptual dominance have been labeled as traveling waves of perceptual dominance. In this study we investigate whether stimulus parameters affect the location at which a traveling wave starts. We varied the contrast, spatial frequency or motion speed in one of the rivaling images, while keeping the same parameter constant in the other image. We used a flash-suppression paradigm to force one of the rival images into perceptual suppression. Observers waited until the suppressed image became perceptually dominant again, and indicated the position at which this breakthrough from suppression occurred. Our results show that the starting point of a traveling wave during binocular rivalry is highly dependent on local stimulus parameters. More specifically, a traveling wave most likely started at the location where the contrast of the suppressed image was higher than that of the dominant one, the spatial frequency of the suppressed image was lower than that of the dominant one, and the motion speed of the suppressed image was higher than that of the dominant one. We suggest that a breakthrough from suppression to dominance occurs at the location where salience (the degree to which a stimulus element stands out relative to neighboring elements) of the suppressed image is higher than that of the dominant one. Our results further show that stimulus parameters affecting the temporal dynamics during continuous viewing of rival images described in other studies, also affect the spatial origin of traveling waves during binocular rivalry

    Manipulation of Pre-Target Activity on the Right Frontal Eye Field Enhances Conscious Visual Perception in Humans

    Get PDF
    The right Frontal Eye Field (FEF) is a region of the human brain, which has been consistently involved in visuo-spatial attention and access to consciousness. Nonetheless, the extent of this cortical site’s ability to influence specific aspects of visual performance remains debated. We hereby manipulated pre-target activity on the right FEF and explored its influence on the detection and categorization of low-contrast near-threshold visual stimuli. Our data show that pre-target frontal neurostimulation has the potential when used alone to induce enhancements of conscious visual detection. More interestingly, when FEF stimulation was combined with visuo-spatial cues, improvements remained present only for trials in which the cue correctly predicted the location of the subsequent target. Our data provide evidence for the causal role of the right FEF pre-target activity in the modulation of human conscious vision and reveal the dependence of such neurostimulatory effects on the state of activity set up by cue validity in the dorsal attentional orienting network

    Tracking Down Abstract Linguistic Meaning: Neural Correlates of Spatial Frame of Reference Ambiguities in Language

    Get PDF
    This functional magnetic resonance imaging (fMRI) study investigates a crucial parameter in spatial description, namely variants in the frame of reference chosen. Two frames of reference are available in European languages for the description of small-scale assemblages, namely the intrinsic (or object-oriented) frame and the relative (or egocentric) frame. We showed participants a sentence such as “the ball is in front of the man”, ambiguous between the two frames, and then a picture of a scene with a ball and a man – participants had to respond by indicating whether the picture did or did not match the sentence. There were two blocks, in which we induced each frame of reference by feedback. Thus for the crucial test items, participants saw exactly the same sentence and the same picture but now from one perspective, now the other. Using this method, we were able to precisely pinpoint the pattern of neural activation associated with each linguistic interpretation of the ambiguity, while holding the perceptual stimuli constant. Increased brain activity in bilateral parahippocampal gyrus was associated with the intrinsic frame of reference whereas increased activity in the right superior frontal gyrus and in the parietal lobe was observed for the relative frame of reference. The study is among the few to show a distinctive pattern of neural activation for an abstract yet specific semantic parameter in language. It shows with special clarity the nature of the neural substrate supporting each frame of spatial reference

    Roles of contour and surface processing in microgenesis of object perception and visual consciousness

    Get PDF
    Developments in visual neuroscience and neural-network modeling indicate the existence of separate pathways for the processing of form and surface attributes of a visual object. In line with prior theoretical proposals, it is assumed that the processing of form can be explicit or conscious only as or after the surface property such as color is filled in. In conjunction with extant psychophysical findings, these developments point to interesting distinctions between nonconscious and conscious processing of these attributes, specifically in relation to distinguishable temporal dynamics. At nonconscious levels form processing proceeds faster than surface processing, whereas in contrast, at conscious levels form processing proceeds slower than surface processing. I mplications of separate form and surface processing for current and future psychophysical and neuroscientific research, particularly that relating cortical oscillations to conjunctions of surface and form features, and for cognitive science and philosophy of mind and consciousness are discussed

    Meiosis genes in Daphnia pulex and the role of parthenogenesis in genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thousands of parthenogenetic animal species have been described and cytogenetic manifestations of this reproductive mode are well known. However, little is understood about the molecular determinants of parthenogenesis. The <it>Daphnia pulex </it>genome must contain the molecular machinery for different reproductive modes: sexual (both male and female meiosis) and parthenogenetic (which is either cyclical or obligate). This feature makes <it>D. pulex </it>an ideal model to investigate the genetic basis of parthenogenesis and its consequences for gene and genome evolution. Here we describe the inventory of meiotic genes and their expression patterns during meiotic and parthenogenetic reproduction to help address whether parthenogenesis uses existing meiotic and mitotic machinery, or whether novel processes may be involved.</p> <p>Results</p> <p>We report an inventory of 130 homologs representing over 40 genes encoding proteins with diverse roles in meiotic processes in the genome of <it>D. pulex</it>. Many genes involved in cell cycle regulation and sister chromatid cohesion are characterized by expansions in copy number. In contrast, most genes involved in DNA replication and homologous recombination are present as single copies. Notably, <it>RECQ2 </it>(which suppresses homologous recombination) is present in multiple copies while <it>DMC1 </it>is the only gene in our inventory that is absent in the <it>Daphnia </it>genome. Expression patterns for 44 gene copies were similar during meiosis <it>versus </it>parthenogenesis, although several genes displayed marked differences in expression level in germline and somatic tissues.</p> <p>Conclusion</p> <p>We propose that expansions in meiotic gene families in <it>D. pulex </it>may be associated with parthenogenesis. Taking into account our findings, we provide a mechanistic model of parthenogenesis, highlighting steps that must differ from meiosis including sister chromatid cohesion and kinetochore attachment.</p
    corecore