We prove quantum ergodicity for a family of graphs that are obtained from
ergodic one-dimensional maps of an interval using a procedure introduced by
Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take
the L^2 functions on the interval. The proof is based on the periodic orbit
expansion of a majorant of the quantum variance. Specifically, given a
one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an
increasingly refined sequence of partitions of the interval. To this sequence
we associate a sequence of graphs, whose directed edges correspond to elements
of the partitions and on which the classical dynamics approximates the
Perron-Frobenius operator corresponding to the map. We show that, except
possibly for subsequences of density 0, the eigenstates of the quantum graphs
equidistribute in the limit of large graphs. For a smaller class of observables
we also show that the Egorov property, a correspondence between classical and
quantum evolution in the semiclassical limit, holds for the quantum graphs in
question.Comment: 20 pages, 1 figur