27 research outputs found

    Biomolecular Origin of The Rate-Dependent Deformation of Prismatic Enamel

    Get PDF
    Penetration deformation of columnar prismatic enamel was investigated using instrumented nanoindentation testing, carried out at three constant strain rates (0.05 s{sup -1}, 0.005 s{sup -1}, and 0.0005 s{sup -1}). Enamel demonstrated better resistance to penetration deformation and greater elastic modulus values were measured at higher strain rates. The origin of the rate-dependent deformation was rationalized to be the shear deformation of nanoscale protein matrix surrounding each hydroxyapatite crystal rods. And the shear modulus of protein matrix was shown to depend on strain rate in a format: G{sub p} = 0.213 + 0.021 ln {dot {var_epsilon}}. Most biological composites compromise reinforcement mineral components and an organic matrix. They are generally partitioned into multi-level to form hierarchical structures that have supreme resistance to crack growth [1]. The molecular mechanistic origin of toughness is associated with the 'sacrificial chains' between the individual sub-domains in a protein molecule [2]. As the protein molecule is stretched, these 'sacrificial chains' break to protect its backbone and dissipate energy [3]. Such fresh insights are providing new momentum toward updating our understanding of biological materials [4]. Prismatic enamel in teeth is one such material. Prismatic microstructure is frequently observed in the surface layers of many biological materials, as exemplified in mollusk shells [5] and teeth [6]. It is a naturally optimized microstructure to bear impact loading and penetration deformation. In teeth, the columnar prismatic enamel provides mechanical and chemical protection for the relatively soft dentin layer. Its mechanical behavior and reliability are extremely important to ensure normal tooth function and human health. Since enamel generally contains up to 95% hydroxyapatite (HAP) crystals and less than 5% protein matrix, it is commonly believed to be a weak and brittle material with little resistance to fracture [7]. This study is aimed at exploring the effect of the weak amelogenin-rich protein matrix on the overall mechanical behavior of prismatic enamel. The experimental work involves applying contact loads at various strain rates to carefully prepared enamel specimens using an instrumented nanoindentater. The enamel material and specimen preparation procedure were described in a previous study [8]. Briefly, the enamel was dissected into small blocks about 2 mm wide and 1 mm thick. These small blocks had relatively flat surfaces, under which the prisms were uniformly perpendicular to the top surfaces for nanoindentation testing [9,10]. The small blocks were then embedded, ground, and finishing polished with 0.03 {micro}m diamond suspension. Nanoindentation testing was carried out in a MTS XP{reg_sign} nanoindenter (MTS nano instrument, Oak Ridge, TN). Each test consisted of three segments, including a loading process, a holding period at the maximum load for a certain time, and a final unloading process. The loading process was carried out under constant strain rbate [11] to reach a defined penetration depth, corresponding to which the maximum load was reached

    Novel G9 rotavirus strains co-circulate in children and pigs, Taiwan

    Get PDF
    Molecular epidemiologic studies collecting information of the spatiotemporal distribution of rotavirus VP7 (G) and VP4 (P) genotypes have shown evidence for the increasing global importance of genotype G9 rotaviruses in humans and pigs. Sequence comparison of the VP7 gene of G9 strains identified different lineages to prevail in the respective host species although some of these lineages appear to be shared among heterologous hosts providing evidence of interspecies transmission events. The majority of these events indicates the pig-to-human spillover, although a reverse route of transmission cannot be excluded either. In this study, new variants of G9 rotaviruses were identified in two children with diarrhea and numerous pigs in Taiwan. Whole genome sequence and phylogenetic analyses of selected strains showed close genetic relationship among porcine and human strains suggesting zoonotic origin of Taiwanese human G9 strains detected in 2014–2015. Although the identified human G9P[19] and G9P[13] rotaviruses represented minority strains, the repeated detection of porcine-like rotavirus strains in Taiwanese children over time justifies the continuation of synchronized strain surveillance in humans and domestic animals

    Dislocation multi-junctions and strain hardening

    Get PDF
    At the microscopic scale, the strength of a crystal derives from the motion, multiplication and interaction of distinctive line defects--dislocations. First theorized in 1934 to explain low magnitudes of crystal strength observed experimentally, the existence of dislocations was confirmed only two decades later. Much of the research in dislocation physics has since focused on dislocation interactions and their role in strain hardening: a common phenomenon in which continued deformation increases a crystal's strength. The existing theory relates strain hardening to pair-wise dislocation reactions in which two intersecting dislocations form junctions tying dislocations together. Here we report that interactions among three dislocations result in the formation of unusual elements of dislocation network topology, termed hereafter multi-junctions. The existence of multi-junctions is first predicted by Dislocation Dynamics (DD) and atomistic simulations and then confirmed by the transmission electron microscopy (TEM) experiments in single crystal molybdenum. In large-scale Dislocation Dynamics simulations, multi-junctions present very strong, nearly indestructible, obstacles to dislocation motion and furnish new sources for dislocation multiplication thereby playing an essential role in the evolution of dislocation microstructure and strength of deforming crystals. Simulation analyses conclude that multi-junctions are responsible for the strong orientation dependence of strain hardening in BCC crystals

    CXCR4 involvement in neurodegenerative diseases

    Get PDF

    Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia

    Get PDF

    CXCR4 involvement in neurodegenerative diseases

    Get PDF
    Neurodegenerative diseases likely share common underlying pathobiology. Although prior work has identified susceptibility loci associated with various dementias, few, if any, studies have systematically evaluated shared genetic risk across several neurodegenerative diseases. Using genome-wide association data from large studies (total n = 82,337 cases and controls), we utilized a previously validated approach to identify genetic overlap and reveal common pathways between progressive supranuclear palsy (PSP), frontotemporal dementia (FTD), Parkinson's disease (PD) and Alzheimer's disease (AD). In addition to the MAPT H1 haplotype, we identified a variant near the chemokine receptor CXCR4 that was jointly associated with increased risk for PSP and PD. Using bioinformatics tools, we found strong physical interactions between CXCR4 and four microglia related genes, namely CXCL12, TLR2, RALB, and CCR5. Evaluating gene expression from post-mortem brain tissue, we found that expression of CXCR4 and microglial genes functionally related to CXCR4 was dysregulated across a number of neurodegenerative diseases. Furthermore, in a mouse model of tauopathy, expression of CXCR4 and functionally associated genes was significantly altered in regions of the mouse brain that accumulate neurofibrillary tangles most robustly. Beyond MAPT, we show dysregulation of CXCR4 expression in PSP, PD, and FTD brains, and mouse models of tau pathology. Our multi-modal findings suggest that abnormal signaling across a 'network' of microglial genes may contribute to neurodegeneration and may have potential implications for clinical trials targeting immune dysfunction in patients with neurodegenerative diseases

    LLNL-JRNL-443671 Shock-Induced Phase Transformation in Tantalum Shock-Induced Phase Transformation in Tantalum

    No full text
    Abstract -A TEM study of pure tantalum and tantalum-tungsten alloys explosively shocked at a peak pressure of 30 GPa is presented. While no omega phase was found in shock-recovered pure Ta and Ta-5W that contain mainly a cellular dislocation structure, shock-induced omega phase was found in Ta-10W that contains evenly-distributed dislocations with a density higher than 1 x 10 12 cm -2 . The shock-induced α (bcc) → ω (hexagonal) transition occurs when dynamic recovery of dislocations become largely suppressed in Ta-10W shocked under dynamic pressure conditions. A dislocation-based mechanism is proposed for the shock-induced phase transformation
    corecore