24 research outputs found

    Retrieving C and O Abundance of HR 8799 c by Combining High- and Low-Resolution Data

    Full text link
    The formation and evolution pathway for the directly-imaged multi-planetary system HR 8799 remains mysterious. Accurate constraints on the chemical composition of the planetary atmosphere(s) are key to solving the mystery. We perform a detailed atmospheric retrieval on HR 8799~c to infer the chemical abundances and abundance ratios using a combination of photometric data along with low- and high-resolution spectroscopic data (R∼\sim20-35,000). We specifically retrieve [C/H], [O/H], and C/O and find them to be 0.55−0.39+0.36^{+0.36}_{-0.39}, 0.47−0.32+0.31^{+0.31}_{-0.32}, and 0.67−0.15+0.12^{+0.12}_{-0.15} at 68\% confidence. The super-stellar C and O abundances, yet a stellar C/O ratio, reveal a potential formation pathway for HR 8799~c. Planet c, and likely the other gas giant planets in the system, formed early on (likely within ∼\sim1 Myr), followed by further atmospheric enrichment in C and O through the accretion of solids beyond the CO iceline. The enrichment either preceded or took place during the early phase of the inward migration to the planet current locations.Comment: 19 pages, 6 figures, 3 tables, accepted to AAS journal

    Vortex Fiber Nulling for Exoplanet Observations: Implementation and First Light

    Full text link
    Vortex fiber nulling (VFN) is a single-aperture interferometric technique for detecting and characterizing exoplanets separated from their host star by less than a diffracted beam width. VFN uses a vortex mask and single mode fiber to selectively reject starlight while coupling off-axis planet light with a simple optical design that can be readily implemented on existing direct imaging instruments that can feed light to an optical fiber. With its axially symmetric coupling region peaking within the inner working angle of conventional coronagraphs, VFN is more efficient at detecting new companions at small separations than conventional direct imaging, thereby increasing the yield of on-going exoplanet search campaigns. We deployed a VFN mode operating in K band (2.0−2.5 μ2.0{-}2.5~\mum) on the Keck Planet Imager and Characterizer (KPIC) instrument at the Keck II Telescope. In this paper we present the instrument design of this first on-sky demonstration of VFN and the results from on-sky commissioning, including planet and star throughput measurements and predicted flux-ratio detection limits for close-in companions. The instrument performance is shown to be sufficient for detecting a companion 10310^3 times fainter than a 5th5^{\mathrm{th}} magnitude host star in 1 hour at a separation of 50 mas (1.1λ/D\lambda/D). This makes the instrument capable of efficiently detecting substellar companions around young stars. We also discuss several routes for improvement that will reduce the required integration time for a detection by a factor >{>}3.Comment: 26 pages, 5 figures; Accepted to JATI

    Retrieving the C and O Abundances of HR 7672~AB: a Solar-Type Primary Star with a Benchmark Brown Dwarf

    Full text link
    A benchmark brown dwarf (BD) is a BD whose properties (e.g., mass and chemical composition) are precisely and independently measured. Benchmark BDs are valuable in testing theoretical evolutionary tracks, spectral synthesis, and atmospheric retrievals for sub-stellar objects. Here, we report results of atmospheric retrieval on a synthetic spectrum and a benchmark BD -- HR 7672~B -- with \petit. First, we test the retrieval framework on a synthetic PHOENIX BT-Settl spectrum with a solar composition. We show that the retrieved C and O abundances are consistent with solar values, but the retrieved C/O is overestimated by 0.13-0.18, which is ∼\sim4 times higher than the formal error bar. Second, we perform retrieval on HR 7672~B using high spectral resolution data (R=35,000) from the Keck Planet Imager and Characterizer (KPIC) and near infrared photometry. We retrieve [C/H], [O/H], and C/O to be −0.24±0.05-0.24\pm0.05, −0.19±0.04-0.19\pm0.04, and 0.52±0.020.52\pm0.02. These values are consistent with those of HR 7672~A within 1.5-σ\sigma. As such, HR 7672~B is among only a few benchmark BDs (along with Gl 570~D and HD 3651~B) that have been demonstrated to have consistent elemental abundances with their primary stars. Our work provides a practical procedure of testing and performing atmospheric retrieval, and sheds light on potential systematics of future retrievals using high- and low-resolution data.Comment: 29 pages, 17 figures, 5 tables, resubmitted to AAS journals after first revisio

    A Clear View of a Cloudy Brown Dwarf Companion from High-Resolution Spectroscopy

    Full text link
    Direct imaging studies have mainly used low-resolution spectroscopy (R∼20−100R\sim20-100) to study the atmospheres of giant exoplanets and brown dwarf companions, but the presence of clouds has often led to degeneracies in the retrieved atmospheric abundances (e.g. C/O, metallicity). This precludes clear insights into the formation mechanisms of these companions. The Keck Planet Imager and Characterizer (KPIC) uses adaptive optics and single-mode fibers to transport light into NIRSPEC (R∼35,000R\sim35,000 in KK band), and aims to address these challenges with high-resolution spectroscopy. Using an atmospheric retrieval framework based on petitRADTRANS, we analyze KPIC high-resolution spectrum (2.29−2.49 μ2.29-2.49~\mum) and archival low-resolution spectrum (1−2.2 μ1-2.2~\mum) of the benchmark brown dwarf HD 4747 B (m=67.2±1.8 MJupm=67.2\pm1.8~M_{\rm{Jup}}, a=10.0±0.2a=10.0\pm0.2 au, Teff≈1400T_{\rm eff}\approx1400 K). We find that our measured C/O and metallicity for the companion from the KPIC high-resolution spectrum agree with that of its host star within 1−2σ1-2\sigma. The retrieved parameters from the KK band high-resolution spectrum are also independent of our choice of cloud model. In contrast, the retrieved parameters from the low-resolution spectrum are highly sensitive to our chosen cloud model. Finally, we detect CO, H2_2O, and CH4_4 (volume mixing ratio of log(CH4_4)=−4.82±0.23-4.82\pm0.23) in this L/T transition companion with the KPIC data. The relative molecular abundances allow us to constrain the degree of chemical disequilibrium in the atmosphere of HD 4747 B, and infer a vertical diffusion coefficient that is at the upper limit predicted from mixing length theory.Comment: 33 pages, 16 figures, Accepted to Ap

    Keck Planet Imager and Characterizer Emission Spectroscopy of WASP-33b

    No full text
    We present Keck Planet Imager and Characterizer (KPIC) high-resolution ( R ∼35,000) K -band thermal emission spectroscopy of the ultrahot Jupiter WASP-33b. The use of KPIC’s single-mode fibers greatly improves both blaze and line-spread stabilities relative to slit spectrographs, enhancing the cross-correlation detection strength. We retrieve the dayside emission spectrum with a nested-sampling pipeline, which fits for orbital parameters, the atmospheric pressure–temperature profile, and the molecular abundances. We strongly detect the thermally inverted dayside and measure mass-mixing ratios for CO ( logCOMMR=−1.1−0.6+0.4{\mathrm{logCO}}_{\mathrm{MMR}}=-{1.1}_{-0.6}^{+0.4} ), H _2 O ( logH2OMMR =−4.1−0.9+0.7{\mathrm{logH}}_{2}{{\rm{O}}}_{\mathrm{MMR}}\,=-{4.1}_{-0.9}^{+0.7} ), and OH ( logOHMMR=−2.1−1.1+0.5{\mathrm{logOH}}_{\mathrm{MMR}}=-{2.1}_{-1.1}^{+0.5} ), suggesting near-complete dayside photodissociation of H _2 O. The retrieved abundances suggest a carbon- and possibly metal-enriched atmosphere, with a gas-phase C/O ratio of 0.8−0.2+0.1{0.8}_{-0.2}^{+0.1} , consistent with the accretion of high-metallicity gas near the CO _2 snow line and post-disk migration or with accretion between the soot and H _2 O snow lines. We also find tentative evidence for ^12 CO/ ^13 CO ∼ 50, consistent with values expected in protoplanetary disks, as well as tentative evidence for a metal-enriched atmosphere (2–15 × solar). These observations demonstrate KPIC’s ability to characterize close-in planets and the utility of KPIC’s improved instrumental stability for cross-correlation techniques

    Detecting Exomoons from Radial Velocity Measurements of Self-luminous Planets: Application to Observations of HR 7672 B and Future Prospects

    No full text
    The detection of satellites around extrasolar planets, so called exomoons, remains a largely unexplored territory. In this work, we study the potential of detecting these elusive objects from radial velocity monitoring of self-luminous, directly imaged planets. This technique is now possible thanks to the development of dedicated instruments combining the power of high-resolution spectroscopy and high-contrast imaging. First, we demonstrate a sensitivity to satellites with a mass ratio of 1%–4% at separations similar to the Galilean moons from observations of a brown-dwarf companion (HR 7672 B; K _mag = 13; 0.″7 separation) with the Keck Planet Imager and Characterizer ( R ∼ 35,000 in the K band) at the W. M. Keck Observatory. Current instrumentation is therefore already sensitive to large unresolved satellites that could be forming from gravitational instability akin to binary star formation. Using end-to-end simulations, we then estimate that future instruments such as the Multi-Object Diffraction-limited High-resolution Infrared Spectrograph, planned for the Thirty Meter Telescope, should be sensitive to satellites with mass ratios of ∼10 ^−4 . Such small moons would likely form in a circumplanetary disk similar to the Jovian satellites in the solar system. Looking for the Rossiter–McLaughlin effect could also be an interesting pathway to detecting the smallest moons on short orbital periods. Future exomoon discoveries will allow precise mass measurements of the substellar companions that they orbit and provide key insight into the formation of exoplanets. They would also help constrain the population of habitable Earth-sized moons orbiting gas giants in the habitable zone of their stars
    corecore