21 research outputs found

    Closely-coupled integration of Locata and GPS for engineering applications

    Get PDF
    GPS has become an almost indispensable part of our infrastructure and modern life. Yet because its accuracy, reliability, and integrity depend on the number and geometric distribution of the visible satellites, it is not reliable enough for the safety of life, environmental or economically critical applications. Traditionally, this has been addressed by augmentation from dedicated support systems, or integration with other sensors. However, from an engineering perspective only expensive inertial systems or pseudolites offer the accuracy required. In the case of pseudolites, the equivalent of ground based satellites, geometry constraints, fading multipath, imprecise clocks, the near-far effect, tropospheric delay and legislative obstructions make them difficult to implement. This thesis takes a step forward, by proposing a loosely coupled integration with Locata, a novel, terrestrial positioning technology, based on the pseudolite concept. It avoids the above pitfalls by utilising frequency and spatially separated antennas and a license-free frequency band, though this comes at the cost of in-bound interference. Its ability to provide stand-alone position and network synchronisation at nanosecond level is used commercially in open-cast mining and in military aviation. Discussion of Locata and GPS technology has identified their shortcomings and main limiting factors as well as the advantages of the proposed integration. During the course of this research, tropospheric delay, planar solution and known point initialisation ambiguity resolution methods have been identified as the main limiting factors for Locata. These are analysed in various static and kinematic scenarios. Discussion also includes ambiguity resolution, noise and interference detection and system performance in indoor and outdoor scenarios. The proposed navigation engine uses a closely coupled integration at the measurement level and LAMBDA as the ambiguity resolution method for Locata and GPS. A combined solution is demonstrated to offer a geometrical improvement, especially in the respect of height determination, with centimetre to decimetre accuracy and a minimum requirement of two signals from any component. This study identifies that proper separation and de-correlation of Locata and GPS ambiguities and better tropospheric models are essential to reach centimetre level accuracy. The thesis concludes with examples of system implementation including: seamless navigation, city-wide network deployment, urban canyons, a long term-monitoring scenario and indoor positioning. This demonstrates how the proposed navigation engine can be an advantage in areas such as: civil engineering, GIS, mobile mapping, deformation, machine navigation and control

    Closely-coupled integration of Locata and GPS for engineering applications

    Get PDF
    GPS has become an almost indispensable part of our infrastructure and modern life. Yet because its accuracy, reliability, and integrity depend on the number and geometric distribution of the visible satellites, it is not reliable enough for the safety of life, environmental or economically critical applications. Traditionally, this has been addressed by augmentation from dedicated support systems, or integration with other sensors. However, from an engineering perspective only expensive inertial systems or pseudolites offer the accuracy required. In the case of pseudolites, the equivalent of ground based satellites, geometry constraints, fading multipath, imprecise clocks, the near-far effect, tropospheric delay and legislative obstructions make them difficult to implement. This thesis takes a step forward, by proposing a loosely coupled integration with Locata, a novel, terrestrial positioning technology, based on the pseudolite concept. It avoids the above pitfalls by utilising frequency and spatially separated antennas and a license-free frequency band, though this comes at the cost of in-bound interference. Its ability to provide stand-alone position and network synchronisation at nanosecond level is used commercially in open-cast mining and in military aviation. Discussion of Locata and GPS technology has identified their shortcomings and main limiting factors as well as the advantages of the proposed integration. During the course of this research, tropospheric delay, planar solution and known point initialisation ambiguity resolution methods have been identified as the main limiting factors for Locata. These are analysed in various static and kinematic scenarios. Discussion also includes ambiguity resolution, noise and interference detection and system performance in indoor and outdoor scenarios. The proposed navigation engine uses a closely coupled integration at the measurement level and LAMBDA as the ambiguity resolution method for Locata and GPS. A combined solution is demonstrated to offer a geometrical improvement, especially in the respect of height determination, with centimetre to decimetre accuracy and a minimum requirement of two signals from any component. This study identifies that proper separation and de-correlation of Locata and GPS ambiguities and better tropospheric models are essential to reach centimetre level accuracy. The thesis concludes with examples of system implementation including: seamless navigation, city-wide network deployment, urban canyons, a long term-monitoring scenario and indoor positioning. This demonstrates how the proposed navigation engine can be an advantage in areas such as: civil engineering, GIS, mobile mapping, deformation, machine navigation and control

    Combination of GPS and RTS measurements for the monitoring of semi-static and dynamic motion of pedestrian bridge

    Get PDF
    GPS and accelerometers have been broadly used the last decade for the monitoring of flexible structures and bridges, while Robotic Total Station (RTS) has been successfully assessed for the monitoring of slow and dynamic motions. Further experimental studies have revealed specific drawbacks of the GPS (multipath, etc.) and RTS (clipping, etc.) monitoring techniques and how these can be surpassed by their combined use. In the current study, we assess the performance of the complementary use of GPS and RTS for the monitoring of the semi-static and dynamic displacement of a relatively rigid pedestrian bridge, with main modal frequency more than 1Hz. Two RTS and GPS receivers were synchronised monitoring the deflection of the two sides of the mid-span of the bridge, while pedestrians excited the bridge. Several excitations (walking, marching, jumping, etc.) were examined, causing semi-static and/or dynamic displacement of the bridge, and rotation of the deck, of different amplitude and frequencies. The analysis of the RTS and GPS time-series, which was based on spectral analysis and band-pass filtering of the time-series, resulted to low- and high-frequency component expressing the semi-static and dynamic displacement. Finally, the combination of the GPS and RTS time-series made possible the estimation of 1-4mm semi-static displacement, the 5-10mm dynamic displacement and the estimation of the main modal frequencies

    Combination of GPS and RTS measurements for the monitoring of semi-static and dynamic motion of pedestrian bridge

    Get PDF
    GPS and accelerometers have been broadly used the last decade for the monitoring of flexible structures and bridges, while Robotic Total Station (RTS) has been successfully assessed for the monitoring of slow and dynamic motions. Further experimental studies have revealed specific drawbacks of the GPS (multipath, etc.) and RTS (clipping, etc.) monitoring techniques and how these can be surpassed by their combined use. In the current study, we assess the performance of the complementary use of GPS and RTS for the monitoring of the semi-static and dynamic displacement of a relatively rigid pedestrian bridge, with main modal frequency more than 1Hz. Two RTS and GPS receivers were synchronised monitoring the deflection of the two sides of the mid-span of the bridge, while pedestrians excited the bridge. Several excitations (walking, marching, jumping, etc.) were examined, causing semi-static and/or dynamic displacement of the bridge, and rotation of the deck, of different amplitude and frequencies. The analysis of the RTS and GPS time-series, which was based on spectral analysis and band-pass filtering of the time-series, resulted to low- and high-frequency component expressing the semi-static and dynamic displacement. Finally, the combination of the GPS and RTS time-series made possible the estimation of 1-4mm semi-static displacement, the 5-10mm dynamic displacement and the estimation of the main modal frequencies

    Combination of GPS and RTS measurements for the monitoring of semi-static and dynamic motion of pedestrian bridge

    Get PDF
    GPS and accelerometers have been broadly used the last decade for the monitoring of flexible structures and bridges, while Robotic Total Station (RTS) has been successfully assessed for the monitoring of slow and dynamic motions. Further experimental studies have revealed specific drawbacks of the GPS (multipath, etc.) and RTS (clipping, etc.) monitoring techniques and how these can be surpassed by their combined use. In the current study, we assess the performance of the complementary use of GPS and RTS for the monitoring of the semi-static and dynamic displacement of a relatively rigid pedestrian bridge, with main modal frequency more than 1Hz. Two RTS and GPS receivers were synchronised monitoring the deflection of the two sides of the mid-span of the bridge, while pedestrians excited the bridge. Several excitations (walking, marching, jumping, etc.) were examined, causing semi-static and/or dynamic displacement of the bridge, and rotation of the deck, of different amplitude and frequencies. The analysis of the RTS and GPS time-series, which was based on spectral analysis and band-pass filtering of the time-series, resulted to low- and high-frequency component expressing the semi-static and dynamic displacement. Finally, the combination of the GPS and RTS time-series made possible the estimation of 1-4mm semi-static displacement, the 5-10mm dynamic displacement and the estimation of the main modal frequencies

    Predictive intelligence for a rail traffic management system

    Get PDF
    As the demands on terrestrial transport systems increase, there is a growing need for greater efficiencies. More intelligent mobility and ultimately autonomous transport assets will deliver these efficiencies through the evolution of cooperative intelligent transport system (C-ITS) technology. Central to this evolution will be the capability to accurately and precisely position assets within their environment and relative to each other to predefined and regulated standards. The core of modern positioning and navigation methods are the global navigation satellite systems (GNSS) (e.g. GPS, Galileo, GLONASS and BeiDou). These systems rely on line of sight radio frequency signals, which are vulnerable to obstruction and/or interference (e.g. multipath and/or non-line of sight reception). As a result, the position accuracy is degraded and therefore GNSS would greatly benefit from a priori intelligence that predicts where and when obscuration or interference will occur. Similarly, a real time assessment of where and when GNSS signal reception will be restored and the location of the satellites in the sky will aid in restoring satellite lock. This paper describes a computer vision system that utilises 360o images to derive a priori intelligence to predict changes in the environment that may threaten position and navigation integrity

    Indoor multipath effect study on the Locata system

    Get PDF
    GNSS has become one of the most wide- spread measurement technologies, allowing cm-level positioning accuracy using RTK or Network RTK. Unfortunately, the system’s major drawbacks are the requirement for a clear view of the sky and accu- racy dependent on the geometric distribution of the satellites, not only varying throughout the day but also prone to location specific problems. With wide- spread utilisation of GNSS for monitoring of man- made structures and other civil engineering tasks, such shortcomings can be critical. One of possible solution is the deployment of a sup- porting system, such as Locata – a terrestrial posi- tioning technology, which mitigates the need for a clear view of the sky and provides system integrity control. This paper, part of the proposed integration feasibil- ity study, presents Locata performance indoors, its capacity and mitigation methods

    GNSS jamming resilience for close to shore navigation in the Northern Sea

    Get PDF
    avigational error accounts for half of the accidents and serious incidents in close to shore maritime transport in Norway predominantly due to the rapidly changing weather conditions and the dangerous nature of the narrow inshore waters found along the Norwegian coast. This creates a dependence on Differential Global Positioning System (DGPS) use and any disruption to this service can lead to an increased accident rate. The aim of this paper is to research the jamming vulnerability of existing maritime receivers and to understand if an upgrade to a multi-constellation or multi-frequency receiver would improve system resilience. The novelty of this work is a comparison of jamming resilience between different combinations of multiple constellations (GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS)) and multi-frequency Global Navigation Satellite System (GNSS) signals. This paper presents results from GNSS jamming trials conducted in the northern part of Norway, confirming previous research and indicating that typical maritime GPS receivers are easy to jam and may produce erroneous positional information. Results demonstrate that the single frequency multi-constellation receivers offer better jamming resilience than multi-frequency (L1 + L2) GPS receivers. Further, the GLONASS constellation demonstrated a better resilience than GPS. Results demonstrate a known correlation between GPS L1 and L2 frequencies, as well as a probable over-dependence on GPS for signal acquisition, meaning that no signal can be received without GPS L1 present. With these limitations in mind, the authors suggest that the most economic update to the single frequency GPS receivers, currently used for maritime applications, should be multi-constellation GPS + GLONASS receivers. This solution is cheaper and it also offer better jamming resistance for close to shore navigation than dual frequency receivers

    GNSS-based Location Determination System Architecture for railway performance assessment in presence of local effects

    Get PDF
    GNSS plays a strategic role on the introduction of the Virtual Balise functionality and the train integrity. Thanks to GNSS, it could be possible to realize cost effective solutions to increase the safety in the regional lines, where the traffic density is lower. The train position estimation is implemented taking into account that the train is constrained to lie on the track (i.e. track constraint). In this way, we can express the position in terms of the curvilinear abscissa (progressive mileage) of the track corresponding to the train position. However, the impact of local effects such as multipath, foliage attenuation and shadowing in the railway environment plays a crucial role due to the presence of infrastructures like platform roofs, side walls, tunnel entrances, buildings and so on close to the trackside. In the paper, we analyse the impact of those threats on the train GNSS-based position estimation performance. At this aim, several scenarios have been generated by using both real data acquired on a railway test-bed in Sardinia, and synthetic data generated in the lab through ad hoc multipath and foliage models. A sensitivity analysis has been conducted, varying main scenarios parameters (e.g. height of obstacles, presence of trees and shadowing). The result of the performed analysis, in terms of availability, accuracy and integrity, are here presented. mitigations implemented by the ERTMS at system level are not considered since the attention is focused on GNSS only

    Monitoring rail infrastructure using multisensor navigation on a moving platform and autonomous robots

    Get PDF
    RailSat aims to use Global Navigation Satellite System (GNSS) to monitor and maintain railway assets and its surrounding environment by railway asset owners and/or other relevant stakeholders. The rail sector is looking for continuous monitoring solutions which have no impact on the train service, both wayside (track bound) and onboard (train bound), which require accurate positioning while travelling at high speeds (>120kmh). This paper focuses on the combination of positioning data from traditional GNSS/INS system with processed LIDAR point cloud and discusses real-life results from the Snake Pass, Peak District, England. Data have been collected using a dedicated multisensory van but the nature of the road allows us to draw conclusions relevant to the rail industry. This paper discusses the proposed deployment of a mobile LiDAR monitoring system consisting of a set of laser scanners and a navigation component. While the LIDAR component is capable of centimetre accuracy, it is limited by the navigation accuracy, predominantly affected by the difficult railway environment, frequent multipath and NLOS interference combined with a loss of signal next to the monitoring structures itself (bridges, cuttings, tunnels, embankments etc.), making precise positioning the biggest challenge. The proposed navigation system combines IMU positioning system with a computer vision system capable of localisation using features in the natural environment. This paper outlines the combination of the proposed navigation system with the LIDAR’s information, which provides two ways of correcting navigation trajectory in post-processing
    corecore