20 research outputs found

    Reusing Treated Waste-Water from a Circular Economy Perspective. The Case of the Real Acequia de Moncada in Valencia (Spain)

    Get PDF
    One of the most important challenges that agriculture faces is sustainable water management and its adaptation to climate change. This adaptation is more important in regions where recurrent draughts and overexploitation of water resources happen. However, historical irrigation systems, such as the Real Acequia de Moncada (RAM) in Valencia, have found innovative approaches to deal with this phenomenon. This paper analyzes the case of Massamagrell and Puçol, which reused the treated waste-water of the closest waste-water treatment plant (WWTP). The study focused from a circular economy perspective on the technological, agronomical, and social implications of this decision. Results show that there are clear benefits for both farmers and WWTP managers. On the one hand, additional nutrients and regularity in their water supply benefit farmers. On the other, WWTP managers can reuse the treated effluent in the system, contributing to the closure of the water cycle and avoiding pumping the treated water into the sea. However, more detailed information and coordination is needed among the different stakeholders. Questions regarding the illegal connection of waste pipes with the traditional irrigation or the payment of pumping costs for reuse have gone unanswered, and there is a need for better reflection from all stakeholders.Ciencias del Ma

    Grafting in Capsicum peppers as a strategy to mitigate the effects of climate change on yield and quality factors

    Get PDF
    Climate change in the Mediterranean areas is increasing problems on droughts, water availability and salinization of irrigation water. These are probably some of the most limiting factors on farming, especially in vegetables production. Capsicum peppers, one the most valuable vegetables in Spain, are quite sensitive to water deficit and particularly to salinity. The use of rootstocks tolerant to these abiotic stresses could be explored as a short/mid-term solution. In this work, we evaluated the ability as rootstocks of several accessions, together commercial F1 ‘Robusto’ and ‘Oscos’, with the cultivar ‘Herminio’ as scion, under control, drought (30% decrease irrigation) and salinity (5.8 dS m-1) in Campo de Cartagena area (Murcia, Spain). Yield and fruit weight, and water content, ascorbic acid content (AAC) and total phenolics (TP) at the unripe and fully ripe commercial stages were evaluated. Under control conditions, our rootstocks did not provide extra vigour and yield as none showed higher performance than the non-grafted ‘Herminio’ in yield (10 kg m-2) and fruit weight (215 g). However, drought and salinity conditions revealed that some accessions might be useful as rootstocks, providing higher yields and/or fruit size than ‘Herminio’, particularly yield under drought, i.e. 5-7 kg m-2 while ‘Herminio’ only achieved 4 kg m-2, and fruit weight in both stress conditions (i.e. 190-223 g vs 173 g under drought, 187-209 g vs 158 g under salinity). On average, drought increased the levels of antioxidants at both ripening stages, while salinity decreased them, specially AAC. Also, remarkable rootstock × treatment interactions, particularly in phenolics, enabled identifying several rootstocks providing high levels of antioxidants at both ripening stages and under both abiotic stresses, improving those from non-grafted ‘Herminio’

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Etude des microRNAS impliqués dans la symbiose de Lotus japonicus

    No full text
    Les légumineuses sont capables d'assimiler le N2 atmosphérique par le processus de la Fixation Symbiotique d'Azote (SNF). Les petits ARNs (sRNAs) sont des molécules de 18-25nt qui régulent l'expression génique par similarité de séquence dans le cadre du mécanisme du RNA silencing. Parmi les différents types de sRNAs, les microRNAs (miRNAs) sont des régulateurs post-transcriptionnels qui jouent un rôle clé dans les interactions plante-bactérie. Nous avons choisi l'espèce modèle Lotus japonicus pour l'étude de la contribution des miRNAs dans la SNF. Premièrement, nous avons identifié les gènes principaux du RNA silencing dans cette espèce. Nous avons ensuite créé des lignées transgéniques exprimant le suppresseur viral P19 qui interfére avec l'activité des miRNAs. Ensuite, nous avons entrepris une stratégie de séquençage de sRNAs de racines et nodules, avec l'objectif d'identifier des miRNA impliqués dans la symbiose. Les données obtenues ont été employées pour l'identification de miRNAs: 16 familles conservées et 27 nouveaux miRNAs potentiels. Une analyse comparative des sRNAs a révélé que l'expression d'un groupe spécifique de miRNA conservés est induite dans les nodules développés: miR167, miR171c, miR172, miR390 et miR397. Des analyses génétiques ont révélé que miR167 et miR172 sont indépendants de l'infection par Rhizobium, ce qui suggère son implication dans le développement du nodule. En revanche, miR397 est non seulement surexprimé lors de l'infection bactérienne, mais aussi suite à la fixation effective de l'azote. En conclusion, ce travail confirme que les miRNAs sont des régulateurs géniques impliqués dans des différentes étapes de la SNF.Legumes assimilate N2 through the establishment of Root Nodule Symbiosis (RNS) with bacteria from the genus Rhizobia. Small RNAs are 18-25nt molecules that regulate gene expression in a sequence-specific manner via a mechanism known as RNA silencing . Among the different types of smRNAs, microRNAs (miRNAs) are post-transcriptional gene regulators that, in plants, play key regulatory roles in plant-microbe interactions. In this context, we chose the model legume Lotus japonicus to assess the contribution of microRNAs to RNS. First, we identified the main RNA silencing effectors in Lotus japonicus, with emphasis on miRNA-related pathways, and generated L. japonicus transgenic lines expressing the tombusviral silencing suppressor P19, which interferes with miRNA action. We then embarked on a smRNA cloning/sequencing strategy. The pooled sequenced data served as basis for the identification of miRNA genes in Lotus japonicus: 16 conserved and 27 potentially novel miRNA families. Comparative analysis of cloned smRNAs from root and nodules revealed that a discrete number of conserved miRNAs, miR167, miR172, miR390 and miR397, are highly expressed in mature nodules, as opposed to roots. Genetic analysis showed that the accumulation of miR167 and miR172 is Rhizobium-independent, as opposed to miR397. Further genetic studies showed that miR397 induction is also reproduced at the systemic level but dependent on the establishment of a successful N2 fixation, rather than on the infection by Rhizobium per se. Thus, our findings confirm that miRNA are important gene regulators at different stages of the establishment of Symbiotic Nitrogen Fixation

    Etude des microRNAS impliqués dans la symbiose de Lotus japonicus

    No full text
    Les légumineuses sont capables d'assimiler le N2 atmosphérique par le processus de la Fixation Symbiotique d'Azote (SNF). Les petits ARNs (sRNAs) sont des molécules de 18-25nt qui régulent l'expression génique par similarité de séquence dans le cadre du mLegumes assimilate N2 through the establishment of Root Nodule Symbiosis (RNS) with bacteria from the genus Rhizobia. Small RNAs are 18-25nt molecules that regulate gene expression in a sequence-specific manner via a mechanism known as RNA silencing . A

    Novel and symbiosis-related microRNAs in Lotus japonicus

    No full text
    Les légumineuses sont capables d'assimiler le N2 atmosphérique par le processus de la Fixation Symbiotique d'Azote (SNF). Les petits ARNs (sRNAs) sont des molécules de 18-25nt qui régulent l'expression génique par similarité de séquence dans le cadre du mécanisme du RNA silencing. Parmi les différents types de sRNAs, les microRNAs (miRNAs) sont des régulateurs post-transcriptionnels qui jouent un rôle clé dans les interactions plante-bactérie. Nous avons choisi l'espèce modèle Lotus japonicus pour l'étude de la contribution des miRNAs dans la SNF. Premièrement, nous avons identifié les gènes principaux du RNA silencing dans cette espèce. Nous avons ensuite créé des lignées transgéniques exprimant le suppresseur viral P19 qui interfére avec l'activité des miRNAs. Ensuite, nous avons entrepris une stratégie de séquençage de sRNAs de racines et nodules, avec l'objectif d'identifier des miRNA impliqués dans la symbiose. Les données obtenues ont été employées pour l'identification de miRNAs: 16 familles conservées et 27 nouveaux miRNAs potentiels. Une analyse comparative des sRNAs a révélé que l'expression d'un groupe spécifique de miRNA conservés est induite dans les nodules développés: miR167, miR171c, miR172, miR390 et miR397. Des analyses génétiques ont révélé que miR167 et miR172 sont indépendants de l'infection par Rhizobium, ce qui suggère son implication dans le développement du nodule. En revanche, miR397 est non seulement surexprimé lors de l'infection bactérienne, mais aussi suite à la fixation effective de l'azote. En conclusion, ce travail confirme que les miRNAs sont des régulateurs géniques impliqués dans des différentes étapes de la SNF.Legumes assimilate N2 through the establishment of Root Nodule Symbiosis (RNS) with bacteria from the genus Rhizobia. Small RNAs are 18-25nt molecules that regulate gene expression in a sequence-specific manner via a mechanism known as ‘RNA silencing’. Among the different types of smRNAs, microRNAs (miRNAs) are post-transcriptional gene regulators that, in plants, play key regulatory roles in plant-microbe interactions. In this context, we chose the model legume Lotus japonicus to assess the contribution of microRNAs to RNS. First, we identified the main RNA silencing effectors in Lotus japonicus, with emphasis on miRNA-related pathways, and generated L. japonicus transgenic lines expressing the tombusviral silencing suppressor P19, which interferes with miRNA action. We then embarked on a smRNA cloning/sequencing strategy. The pooled sequenced data served as basis for the identification of miRNA genes in Lotus japonicus: 16 conserved and 27 potentially novel miRNA families. Comparative analysis of cloned smRNAs from root and nodules revealed that a discrete number of conserved miRNAs, miR167, miR172, miR390 and miR397, are highly expressed in mature nodules, as opposed to roots. Genetic analysis showed that the accumulation of miR167 and miR172 is Rhizobium-independent, as opposed to miR397. Further genetic studies showed that miR397 induction is also reproduced at the systemic level but dependent on the establishment of a successful N2 fixation, rather than on the infection by Rhizobium per se. Thus, our findings confirm that miRNA are important gene regulators at different stages of the establishment of Symbiotic Nitrogen Fixation

    Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue

    Full text link
    [EN] Capsicumpeppers (Capsicumspp.), especiallyC. annuumL., are one of the most important vegetables and spices in the world and their fruits are used in a range of food dishes, to provide aroma and flavor. Pungency has been largely studied, while studies on the volatile fraction are more recent and less diverse. A considerable varietal diversity among peppers has been reported in terms of the aroma quality and the qualitative and quantitative variation in the volatile fraction, particularly in fully ripe fruits, which encompass most diverse food applications and aroma profiles. Thus, a study was designed to study the inheritance of the volatile fractions in peppers and to determine if they can be improved by breeding strategies. The volatile fraction of 175 samples of ripe fruits from a diverse collection of peppers, encompassing a range of varietal types and aroma qualities, were isolated by headspace-solid-phase microextraction (HS-SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). A diverse profile of volatiles including terpenoids, esters, alkanes, and several aldehydes and alcohols, was found among the evaluated accessions. Our findings indicated that, in most cases, hybridization provided higher amounts of total volatiles and a more complex composition, particularly in the pericarp. In addition, the volatile fraction can be inherited from the parents to the offspring, as most individual volatiles in hybrids, especially major volatiles, were present in at least one of the parents, following intermediate (levels between parents) or transgressive (levels higher than the best parent) inheritance. De novo compounds (present in the hybrid, absent in the parents) were found in many samples. Comparatively, placental tissues had higher total and individual volatile levels compared with the pericarp in most parent accessions and hybrids, which must be considered by breeders if this part of the fruit is included in food formulations. By combining parent lines with complementary volatile fractions, hybridization offers a feasible method to improve the volatile composition of ripe fruits in Capsicum peppers.This work has been funded by INIA project RTA2014-00041-C02-02, FEDER Funds.Moreno Peris, E.; Cortés Olmos, C.; Díez-Díaz, M.; González-Más, MC.; De Luis-Margarit, A.; Fita, A.; Rodríguez Burruezo, A. (2020). Hybridization in peppers (Capsicum sp.) to improve the volatile composition in fully ripe fruits: effect of parent combination and fruit tissue. Agronomy. 10(5):1-23. https://doi.org/10.3390/agronomy10050751S123105Garcés-Claver, A., Arnedo-Andrés, M. S., Abadía, J., Gil-Ortega, R., & Álvarez-Fernández, A. (2006). Determination of Capsaicin and Dihydrocapsaicin in Capsicum Fruits by Liquid Chromatography−Electrospray/Time-of-Flight Mass Spectrometry. Journal of Agricultural and Food Chemistry, 54(25), 9303-9311. doi:10.1021/jf0620261López Castilla, L. del C., Garruña Hernández, R., Castillo Aguilar, C. de la C., Martínez-Hernández, A., Ortiz-García, M. M., & Andueza-Noh, R. H. (2019). Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico. Agronomy, 9(7), 376. doi:10.3390/agronomy9070376Pereira-Dias, L., Vilanova, S., Fita, A., Prohens, J., & Rodríguez-Burruezo, A. (2019). Genetic diversity, population structure, and relationships in a collection of pepper (Capsicum spp.) landraces from the Spanish centre of diversity revealed by genotyping-by-sequencing (GBS). Horticulture Research, 6(1). doi:10.1038/s41438-019-0132-8Patel, K., Ruiz, C., Calderon, R., Marcelo, M., & Rojas, R. (2016). Characterisation of volatile profiles in 50 native Peruvian chili pepper using solid phase microextraction–gas chromatography mass spectrometry (SPME–GCMS). Food Research International, 89, 471-475. doi:10.1016/j.foodres.2016.08.023Ribes-Moya, A. M., Raigón, M. D., Moreno-Peris, E., Fita, A., & Rodríguez-Burruezo, A. (2018). Response to organic cultivation of heirloom Capsicum peppers: Variation in the level of bioactive compounds and effect of ripening. PLOS ONE, 13(11), e0207888. doi:10.1371/journal.pone.0207888PINO, J., GONZALEZ, M., CEBALLOS, L., CENTURIONYAH, A., TRUJILLOAGUIRRE, J., LATOURNERIEMORENO, L., & SAURIDUCH, E. (2007). Characterization of total capsaicinoids, colour and volatile compounds of Habanero chilli pepper (Capsicum chinense Jack.) cultivars grown in Yucatan. Food Chemistry, 104(4), 1682-1686. doi:10.1016/j.foodchem.2006.12.067Rodríguez-Burruezo, A., Kollmannsberger, H., González-Mas, M. C., Nitz, S., & Fernando, N. (2010). HS-SPME Comparative Analysis of Genotypic Diversity in the Volatile Fraction and Aroma-Contributing Compounds of Capsicum Fruits from the annuum−chinense−frutescens Complex. Journal of Agricultural and Food Chemistry, 58(7), 4388-4400. doi:10.1021/jf903931tBogusz Junior, S., Tavares, A. M., Filho, J. T., Zini, C. A., & Godoy, H. T. (2012). Analysis of the volatile compounds of Brazilian chilli peppers (Capsicum spp.) at two stages of maturity by solid phase micro-extraction and gas chromatography-mass spectrometry. Food Research International, 48(1), 98-107. doi:10.1016/j.foodres.2012.02.005Morales-Soriano, E., Kebede, B., Ugás, R., Grauwet, T., Van Loey, A., & Hendrickx, M. (2018). Flavor characterization of native Peruvian chili peppers through integrated aroma fingerprinting and pungency profiling. Food Research International, 109, 250-259. doi:10.1016/j.foodres.2018.04.030Olguín-Rojas, J., Fayos, O., Vázquez-León, L., Ferreiro-González, M., Rodríguez-Jimenes, G., Palma, M., … Barbero, G. (2019). Progression of the Total and Individual Capsaicinoids Content in the Fruits of Three Different Cultivars of Capsicum chinense Jacq. Agronomy, 9(3), 141. doi:10.3390/agronomy9030141Baby, K. C., & Ranganathan, T. V. (2016). Effect of enzyme pretreatment on yield and quality of fresh green chilli ( Capsicum annuum L) oleoresin and its major capsaicinoids. Biocatalysis and Agricultural Biotechnology, 7, 95-101. doi:10.1016/j.bcab.2016.05.010Barchenger, D. W., & Bosland, P. W. (2016). Exogenous applications of capsaicin inhibits seed germination of Capsicum annuum. Scientia Horticulturae, 203, 29-31. doi:10.1016/j.scienta.2016.03.009Scoville, W. L. (1912). Note on Capsicums. The Journal of the American Pharmaceutical Association (1912), 1(5), 453-454. doi:10.1002/jps.3080010520Estrada, B., Pomar, F., Dı́az, J., Merino, F., & Bernal, M. . (1999). Pungency level in fruits of the Padrón pepper with different water supply. Scientia Horticulturae, 81(4), 385-396. doi:10.1016/s0304-4238(99)00029-1Jarret, R. L., Perkins, B., Fan, T., Prince, A., Guthrie, K., & Skoczenski, B. (2003). Using EIA to screen Capsicum spp. germplasm for capsaicinoid content. Journal of Food Composition and Analysis, 16(2), 189-194. doi:10.1016/s0889-1575(02)00161-8Wahyuni, Y., Ballester, A.-R., Sudarmonowati, E., Bino, R. J., & Bovy, A. G. (2013). Secondary Metabolites of Capsicum Species and Their Importance in the Human Diet. Journal of Natural Products, 76(4), 783-793. doi:10.1021/np300898zLu, M., Ho, C.-T., & Huang, Q. (2017). Extraction, bioavailability, and bioefficacy of capsaicinoids. Journal of Food and Drug Analysis, 25(1), 27-36. doi:10.1016/j.jfda.2016.10.023Kollmannsberger, H., Rodríguez-Burruezo, A., Nitz, S., & Nuez, F. (2011). Volatile and capsaicinoid composition of ají (Capsicum baccatum) and rocoto (Capsicum pubescens), two Andean species of chile peppers. Journal of the Science of Food and Agriculture, 91(9), 1598-1611. doi:10.1002/jsfa.4354Eggink, P. M., Tikunov, Y., Maliepaard, C., Haanstra, J. P. W., de Rooij, H., Vogelaar, A., … Visser, R. G. F. (2013). Capturing flavors from Capsicum baccatum by introgression in sweet pepper. Theoretical and Applied Genetics, 127(2), 373-390. doi:10.1007/s00122-013-2225-3Luning, P. A., de Rijk, T., Wichers, H. J., & Roozen, J. P. (1994). Gas Chromatography, Mass Spectrometry, and Sniffing Port Analyses of Volatile Compounds of Fresh Bell Peppers (Capsicum annuum) at Different Ripening Stages. Journal of Agricultural and Food Chemistry, 42(4), 977-983. doi:10.1021/jf00040a027Cremer, D. R., & Eichner, K. (2000). Formation of Volatile Compounds during Heating of Spice Paprika (Capsicum annuum) Powder. Journal of Agricultural and Food Chemistry, 48(6), 2454-2460. doi:10.1021/jf991375aHammer, K., Arrowsmith, N., & Gladis, T. (2003). Agrobiodiversity with emphasis on plant genetic resources. Naturwissenschaften, 90(6), 241-250. doi:10.1007/s00114-003-0433-4Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2005). Leaf Volatile Compounds of Six Citrus Somatic Allotetraploid Hybrids Originating from Various Combinations of Lime, Lemon, Citron, Sweet Orange, and Grapefruit. Journal of Agricultural and Food Chemistry, 53(6), 2224-2230. doi:10.1021/jf048315bRodríguez-Burruezo, A., Kollmannsberger, H., Prohens, J., Nitz, S., & Nuez, F. (2004). Analysis of the Volatile Aroma Constituents of Parental and Hybrid Clones of Pepino (Solanum muricatum). Journal of Agricultural and Food Chemistry, 52(18), 5663-5669. doi:10.1021/jf040107wAntonio, A. S., Wiedemann, L. S. M., & Veiga Junior, V. F. (2018). The genusCapsicum: a phytochemical review of bioactive secondary metabolites. RSC Advances, 8(45), 25767-25784. doi:10.1039/c8ra02067aZimmermann, M., & Schieberle, P. (2000). Important odorants of sweet bell pepper powder ( Capsicum annuum cv. annuum): differences between samples of Hungarian and Morrocan origin. European Food Research and Technology, 211(3), 175-180. doi:10.1007/s002170050019Simian, H., Robert, F., & Blank, I. (2003). Identification and Synthesis of 2-Heptanethiol, a New Flavor Compound Found in Bell Peppers. Journal of Agricultural and Food Chemistry, 52(2), 306-310. doi:10.1021/jf035008hSosa-Moguel, O., Pino, J. A., Ayora-Talavera, G., Sauri-Duch, E., & Cuevas-Glory, L. (2017). Biological activities of volatile extracts from two varieties of Habanero pepper (Capsicum chinense Jacq.). International Journal of Food Properties, 20(sup3), S3042-S3051. doi:10.1080/10942912.2017.1397694Bianchi, G., & Lo Scalzo, R. (2018). Characterization of hot pepper spice phytochemicals, taste compounds content and volatile profiles in relation to the drying temperature. Journal of Food Biochemistry, 42(6), e12675. doi:10.1111/jfbc.12675Moreno, E., Fita, A., González-Mas, M. C., & Rodríguez-Burruezo, A. (2012). HS-SPME study of the volatile fraction of Capsicum accessions and hybrids in different parts of the fruit. Scientia Horticulturae, 135, 87-97. doi:10.1016/j.scienta.2011.12.001Gomez, E., Ledbetter, C. A., & Hartsell, P. L. (1993). Volatile compounds in apricot, plum, and their interspecific hybrids. Journal of Agricultural and Food Chemistry, 41(10), 1669-1676. doi:10.1021/jf00034a029Gancel, A.-L., Ollitrault, P., Froelicher, Y., Tomi, F., Jacquemond, C., Luro, F., & Brillouet, J.-M. (2003). Leaf Volatile Compounds of Seven Citrus Somatic Tetraploid Hybrids Sharing Willow Leaf Mandarin (Citrus deliciosa Ten.) as Their Common Parent. Journal of Agricultural and Food Chemistry, 51(20), 6006-6013. doi:10.1021/jf0345090Metsalu, T., & Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Research, 43(W1), W566-W570. doi:10.1093/nar/gkv468Cuevas-Glory, L. F., Sosa-Moguel, O., Pino, J., & Sauri-Duch, E. (2014). GC–MS Characterization of Volatile Compounds in Habanero Pepper (Capsicum chinense Jacq.) by Optimization of Headspace Solid-Phase Microextraction Conditions. Food Analytical Methods, 8(4), 1005-1013. doi:10.1007/s12161-014-9980-xOrzaez, D., & Granell, A. (2009). Reverse genetics and transient gene expression in fleshy fruits. Plant Signaling & Behavior, 4(9), 864-867. doi:10.4161/psb.4.9.9422Pinheiro, T. T., Peres, L. E. P., Purgatto, E., Latado, R. R., Maniero, R. A., Martins, M. M., & Figueira, A. (2019). Citrus carotenoid isomerase gene characterization by complementation of the «Micro-Tom» tangerine mutant. Plant Cell Reports, 38(5), 623-636. doi:10.1007/s00299-019-02393-2Rothan, C., Diouf, I., & Causse, M. (2018). Trait discovery and editing in tomato. The Plant Journal, 97(1), 73-90. doi:10.1111/tpj.14152Goulet, B. E., Roda, F., & Hopkins, R. (2016). Hybridization in Plants: Old Ideas, New Techniques. Plant Physiology, 173(1), 65-78. doi:10.1104/pp.16.01340Rambla, J. L., Tikunov, Y. M., Monforte, A. J., Bovy, A. G., & Granell, A. (2013). The expanded tomato fruit volatile landscape. Journal of Experimental Botany, 65(16), 4613-4623. doi:10.1093/jxb/eru128Aubert, C., & Milhet, C. (2007). Distribution of the volatile compounds in the different parts of a white-fleshed peach (Prunus persica L. Batsch). Food Chemistry, 102(1), 375-384. doi:10.1016/j.foodchem.2006.05.030Moing, A., Aharoni, A., Biais, B., Rogachev, I., Meir, S., Brodsky, L., … Hall, R. D. (2011). Extensive metabolic cross‐talk in melon fruit revealed by spatial and developmental combinatorial metabolomics. New Phytologist, 190(3), 683-696. doi:10.1111/j.1469-8137.2010.03626.xWang, L., Qian, C., Bai, J., Luo, W., Jin, C., & Yu, Z. (2017). Difference in volatile composition between the pericarp tissue and inner tissue of tomato (Solanum lycopersicum) fruit. Journal of Food Processing and Preservation, 42(1), e13387. doi:10.1111/jfpp.13387Dardick, C., & Callahan, A. M. (2014). Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Frontiers in Plant Science, 5. doi:10.3389/fpls.2014.00284Bosland, P. W., Coon, D., & Cooke, P. H. (2015). Novel Formation of Ectopic (Nonplacental) Capsaicinoid Secreting Vesicles on Fruit Walls Explains the Morphological Mechanism for Super-hot Chile Peppers. Journal of the American Society for Horticultural Science, 140(3), 253-256. doi:10.21273/jashs.140.3.25

    Challenges of the use of new generation massive sequencing (NGS) of the benthic macrofauna for the evaluation of the marine environment quality.

    No full text
    La Directiva Marco del Agua 2000/60/CE obliga al diagnóstico ambiental del ecosistema marino, incluyendo la evaluación de las especies de macroinvertebrados considerados bioindicadores presentes en el medio. Hasta la fecha, este tipo de determinaciones se realizan mediante la identificación taxonómica de visu de la macrofauna bentónica presente en las muestras y el cálculo de bioíndices asociados, un proceso costoso en términos de tiempo y financiación y, en algunos casos, subjetivo por precisar de un equipo humano altamente especializado y por la dificultad de identificar correctamente determinadas especies. En este sentido, las técnicas de DNA barcoding permiten identificar de forma fiable organismos empleando técnicas de secuenciación de DNA y evitando las desventajas de la identificación morfotaxonómica. Por otro lado, el reciente desarrollo de técnicas de secuenciación masiva de DNA de nueva generación (NGS) ha permitido el desarrollo del DNA metabarcoding, o caracterización de poblaciones de organismos presentes en una muestra empleando datos genómicos. Este trabajo plantea los retos fundamentales que presenta, a día de hoy, el análisis de organismos bioindicadores de calidad ambiental marina a través de las técnicas de secuenciación NGS.The Water Framework Directive 2000/60/EC regulates the environmental diagnosis of the marine ecosystem, including the evaluation of species of bioindicator macroinvertebrates present in the environment. To date, these types of determinations are carried out through the morphotaxonomic identification of the benthic macrofauna present in the samples and the calculation of associated biotic indexes, a process that is time-consuming and resource-intensive, being in some cases inaccurate due to the requirement of highly specialized human resources and the difficulty of correctly identifying certain species. In this respect, DNA barcoding techniques allow the reliable identification of organisms using DNA sequencing techniques and avoiding the disadvantages of morphotaxonomic identification. On the other hand, the recent development of New Generation DNA Sequencing techniques (NGS) has allowed the development of DNA metabarcoding, i.e. the characterization of populations of organisms present in a sample using genomic data. This paper shows the fundamental challenges to be overcome in order to establish a NGS sequencing-based assessment of the marine environmental quality.Ciencias Experimentale
    corecore