13,135 research outputs found

    Age and growth of Zapteryx brevirostris (Elasmobranchii: Rhinobatidae) in southern Brazil

    Get PDF
    Age and growth studies are fundamental to successful fisheries management. Zapteryx brevirostris (Muller & Henle, 1841) is distributed off the Brazilian continental shelf and this species is assessed as "Vulnerable" in the Red List of the International Union for the Conservation of Nature (IUCN). Thus, the objective of this study was to present previously unknown information about the age and growth of Z. brevirostris that can be used for its management, conservation, and fisheries. A total of 162 specimens were sampled, with total lengths (TL) varying between 35.7 cm and 56 cm. The vertebrae were embedded in resin, sectioned in cuts with 0.5 mm thickness and the growth bands of the vertebrae were read under a light microscope. In the studied area, Z. brevirostris ages were estimated from 4 to 10 years according to vertebrae patterns. The species reaches its maximum asymptotic size (Linf) around 56 cm (56 cm for females and 50.37 cm for males). This is the first estimate of age and growth for a species of the Zapteryx genus, and the results support the hypothesis that this ray requires future management conservation, particularly due to its slow growth rate and consequent susceptibility to overexploitation.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES); Portuguese Foundation for Science and Technology (FCT, Fundacao para a Ciencia e Tecnologia) [IF/00253/2014

    Triaxial Angular Momentum Projection and Configuration Mixing calculations with the Gogny force

    Full text link
    We present the first implementation in the (β,γ)(\beta,\gamma) plane of the generator coordinate method with full triaxial angular momentum and particle number projected wave functions using the Gogny force. Technical details about the performance of the method and the convergence of the results both in the symmetry restoration and the configuration mixing parts are discussed in detail. We apply the method to the study of 24^{24}Mg, the calculated energies of excited states as well as the transition probabilities are compared to the available experimental data showing a good overall agreement. In addition, we present the RVAMPIR approach which provides a good description of the ground and gamma bands in the absence of strong mixing.Comment: 40 pages,14 figure

    Detection and Mapping of Decoupled Stellar and Ionized Gas Structures in the Ultraluminous Infrared Galaxy IRAS 12112+0305

    Get PDF
    Integral field optical spectroscopy with the INTEGRAL fiber-fed system and HST optical imaging are used to map the complex stellar and warm ionized gas structure in the ultraluminous infrared galaxy IRAS 12112+0305. Images reconstructed from wavelength-delimited extractions of the integral field spectra reveal that the observed ionized gas distribution is decoupled from the stellar main body of the galaxy, with the dominant continuum and emission-line regions separated by projected distances of up to 7.5 kpc. The two optical nuclei are detected as apparently faint emission-line regions, and their optical properties are consistent with being dust-enshrouded weak-[OI] LINERs. The brightest emission-line region is associated with a faint (m_{I}= 20.4), giant HII region of 600 pc diameter, where a young (about 5 Myr) massive cluster of about 2 ×\times 107^7 M⊙M_{\odot} dominates the ionization. Internal reddening towards the line-emitting regions and the optical nuclei ranges from 1 to 8 magnitudes, in the visual. Taken the reddening into aacount, the overall star formation in IRAS 12112+0305 is dominated by starbursts associated with the two nuclei and corresponding to a star formation rate of 80 M⊙M_{\odot} yr−1^{-1}.Comment: 2 figures, accepted to Ap.J. Letter

    Criticality of natural absorbing states

    Full text link
    We study a recently introduced ladder model which undergoes a transition between an active and an infinitely degenerate absorbing phase. In some cases the critical behaviour of the model is the same as that of the branching annihilating random walk with N≥2N\geq 2 species both with and without hard-core interaction. We show that certain static characteristics of the so-called natural absorbing states develop power law singularities which signal the approach of the critical point. These results are also explained using random walk arguments. In addition to that we show that when dynamics of our model is considered as a minimum finding procedure, it has the best efficiency very close to the critical point.Comment: 6 page

    Mechanisms for Outsourcing Computation via a Decentralized Market

    Full text link
    As the number of personal computing and IoT devices grows rapidly, so does the amount of computational power that is available at the edge. Since many of these devices are often idle, there is a vast amount of computational power that is currently untapped, and which could be used for outsourcing computation. Existing solutions for harnessing this power, such as volunteer computing (e.g., BOINC), are centralized platforms in which a single organization or company can control participation and pricing. By contrast, an open market of computational resources, where resource owners and resource users trade directly with each other, could lead to greater participation and more competitive pricing. To provide an open market, we introduce MODiCuM, a decentralized system for outsourcing computation. MODiCuM deters participants from misbehaving-which is a key problem in decentralized systems-by resolving disputes via dedicated mediators and by imposing enforceable fines. However, unlike other decentralized outsourcing solutions, MODiCuM minimizes computational overhead since it does not require global trust in mediation results. We provide analytical results proving that MODiCuM can deter misbehavior, and we evaluate the overhead of MODiCuM using experimental results based on an implementation of our platform

    Linear response functions for a vibrational configuration interaction state

    Get PDF
    Linear response functions are implemented for a vibrational configuration interaction state allowing accurate analytical calculations of pure vibrational contributions to dynamical polarizabilities. Sample calculations are presented for the pure vibrational contributions to the polarizabilities of water and formaldehyde. We discuss the convergence of the results with respect to various details of the vibrational wave function description as well as the potential and property surfaces. We also analyze the frequency dependence of the linear response function and the effect of accounting phenomenologically for the finite lifetime of the excited vibrational states. Finally, we compare the analytical response approach to a sum-over-states approac
    • …
    corecore