93 research outputs found

    Characterization of Woodchips for Energy from Forestry and Agroforestry Production

    Get PDF
    We set out to determine the particle-size distribution, the fiber, the bark and the leaves content, the heating value, the CNH and the ash content of a wide sample of wood chips, collected from 10 forestry and 10 agroforestry production sources. This sampling focused on two main production types: forestry (Full Tree System—FTS—and logging residues—LR) and agroforestry (Short Rotation Coppice—SRC). For the forestry production wood chips from coniferous and broadleaf species were considered. For the agroforestry production wood chips from poplar plantations were examined (different clones with two different harvesting intervals). Overall, we collected 400 samples. Particle size distribution was determined with an automatic screening device on 200 samples. The higher heating value was determined on 200 subsamples using an adiabatic bomb calorimeter. The CNH and the ash content was ascertained on another 200 subsamples. FTS and SRC (with three year old sprouts) offered the best quality, with high fiber content (71%–80%), favorable particle-size distribution and good energetic parameters. On the contrary, both logging residues and SRC (with two year old sprouts) presented a high bark content (18%–27%) and occasionally a mediocre particle-size distribution, being often too rich in fines (6%–12%), but the energetic parameters are in the normal range

    A Single-pass Reduced Tillage Technique for the Establishment of Short-Rotation Poplar (Populus spp.) Plantations

    Get PDF
    In Italy, there has been a significant increase of the areas cultivated with short-rotation forestry (SRF) poplar (Populus spp.) for the production of lignocellulosic biomass. This species has been generally introduced on soils managed with conventional farming practices that led to the formation of a hardpan. This constitutes a serious obstacle for root development and water availability, which affect the successful establishment of the plantation. To this end the Unit of Agricultural Engineering of the Agricultural Research Council (CRA-ING) has developed a new system for reduced tillage (RT), to be used during the establishment of SRF poplar. This new system aims at breaking the tillage pan and at reducing both traffic intensity and site preparation cost. A new machine has been developed, which is based on a commercial rotary plough, suitably modified by adding a shank subsoiler. This machine can perform both deep soil ripping and surface ploughing in a single pass, treating narrow strips where poplar cuttings are to be planted. The study compared conventional tillage (CT) with RT, showing that latter allowed a dramatic reduction of the number of field operations and of all related problems, while creating better conditions for poplar rooting without meaningful effects on yield

    Determining wood chip size: image analysis and clustering methods

    Get PDF
    One of the standard methods for the determination of the size distribution of wood chips is the oscillating screen method (EN 15149- 1:2010). Recent literature demonstrated how image analysis could return highly accurate measure of the dimensions defined for each individual particle, and could promote a new method depending on the geometrical shape to determine the chip size in a more accurate way. A sample of wood chips (8 litres) was sieved through horizontally oscillating sieves, using five different screen hole diameters (3.15, 8, 16, 45, 63 mm); the wood chips were sorted in decreasing size classes and the mass of all fractions was used to determine the size distribution of the particles. Since the chip shape and size influence the sieving results, Wang’s theory, which concerns the geometric forms, was considered. A cluster analysis on the shape descriptors (Fourier descriptors) and size descriptors (area, perimeter, Feret diameters, eccentricity) was applied to observe the chips distribution. The UPGMA algorithm was applied on Euclidean distance. The obtained dendrogram shows a group separation according with the original three sieving fractions. A comparison has been made between the traditional sieve and clustering results. This preliminary result shows how the image analysis-based method has a high potential for the characterization of wood chip size distribution and could be further investigated. Moreover, this method could be implemented in an online detection machine for chips size characterization. An improvement of the results is expected by using supervised multivariate methods that utilize known class memberships. The main objective of the future activities will be to shift the analysis from a 2-dimensional method to a 3- dimensional acquisition process

    HIGH CALORIFIC VALUE OF LIGNIN DERIVED FROM TURKEY OAK WOOD: COMBINED EFFECT OF STEAMING AND THERMAL TREATMENT

    Get PDF
    Turkey oak (Quercus cerris L.) is a deciduous species characterized by high morphological variability and a widespread distribution range along with South-East Europe. The wood of Turkey oak is scarcely considered as industrial lumber and is mainly used as firewood. Biomass pre-processing by heating improves feedstock consistency (mainly loss of water) and thereby improves its energetic efficiency. The main goal of this research was to evaluate how different hydro-thermal treatments affect the high calorific values and the relative ash content of lignin-derived from Turkey oak wood differentially treated by combining temperature, time and steam parameters. Sapwood and heartwood were distinguished for each treatment. Twelve different treatments were performed by using samples randomly selected. Samples were treated in a small heating unit with ± 1 °C accuracy under atmospheric pressure, according to two different heating cycles namely 120 and 180 °C. The Klason lignin content was assessed by a modified TAPPI method. High calorific value (HCV) was calculated by the fire testing technology bomb calorimeter method. Thermal treatment and the steaming processes significantly increased the HCV in examined wood samples. The strongest effect was highlighted when steaming was associated with the highest temperature. The combined effect of steaming and heating was shown to be effective in the process improvement in order to obtain both a higher content of lignin and a corresponding improvement of HCV. Keywords: treatment, high calorific value, lignin

    Study on the Effect of a New Rotor Designed for Chipping Short Rotation Woody Crops

    Get PDF
    The particle size distribution of wood chips, along with the moisture content, are some of the main parameters for defining the quality of most wood fuels. A new experimental rotor, powered by the self-propelled forage harvester Claas Jaguar was developed by the Consiglio per la ricerca in agricoltura e l\u27analisi dell\u27economia agraria (CRA), Agricultural Engineering Research Unit (CRA-ING). The rotor allowed for improved dimensional features of wood chips. The comminution achieved with the CRA–ING drum increased the percentage of 16–45 mm wood chips fraction from 63.69% to 73.29%, and progressively reduced the fraction of chips less than 16 mm from 35.20 to 25.35%. Consequently, the bulk density of the chips decreased by 8.57% in comparison with products obtained by standard devices. The dimensional increments achieved by the rotor and the percentage reduction of the smallest fractions represent two valuable elements affecting the behaviour of the wood chips during storage and handling

    integration of srf and carbonization plant for small forestry farms

    Get PDF
    Abstract A continuous oxidative carbonization pilot unit, with a capacity of 50 kg/h,has been developed and builtby RE-CORD; reported performance data shows that the unit can produce high quality charcoal, suitable for BBQ, metallurgy of activated-carbon manufacturing, as well as biochar. Charcoal yield in excess of 24 wt% (dry) has been achieved, with a fixed carbon content higher than 85 wt% (dry). In this work,the up-scaled 250 kg/h demo plant has been designed, and the construction, operation and maintenancecosts estimated. It was assumed to feed the plant with a dedicated SRF of either poplar or robinia, which represents a very innovative and yet unexplored value chain. Performance data are reported along with economic evaluation of the whole chain. Results shows how aland management scheme based on SRF coupled to innovative small-scale biomass carbonization technology represents an appealing opportunity for business diversification in small and medium forestry enterprises

    An Overview of the Bioactive Profile and Food Applications of This Versatile Crop Adapted to Arid Lands

    Get PDF
    Funding Information: This research was funded by national funding by the FCT, Foundation for Science and Technology, through the individual research grant (2020.04441.BD) of C.R. This work was supported by the Associate Laboratory for Green Chemistry—LAQV, which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020), and by the Mechanical Engineering and Resource Sustainability Center—MEtRICs, which is financed by national funds from FCT/MCTES (UIDB/04077/2020 and UIDP/04077/2020). This work also received funds from FCT/MCTES through project ERANETMED/0001/2017—MediOpuntia (Portugal). The project MediOpuntia also received support through ERANETMED-MediOpuntia from Science and Technology Development Funding authority (STDF—Egypt), Ministry of Education, Universities and Research (MIUR—Italy), and Ministry of National Education, Vocational Training, Higher Education and Scientific Research (MENFPESRS—Morocco). Publisher Copyright: © 2023 by the authors.Opuntia spp. are crops well adapted to adverse environments and have great economic potential. Their constituents, including fruits, cladodes, and flowers, have a high nutritional value and are rich in value-added compounds. Cladodes have an appreciable content in dietary fiber, as well as bioactive compounds such as kaempferol, quercetin, and isorhamnetin. Fruits are a major source of bioactive compounds such as phenolic acids and vitamin C. The seeds are mainly composed of unsaturated fatty acids and vitamin E. The flowers are also rich in phenolic compounds. Therefore, in addition to their traditional uses, the different plant fractions can be processed to meet multiple applications in the food industry. Several bakery products have been developed with the incorporation of cladode flour. Pectin and mucilage obtained from cladodes can act as edible films and coatings. Fruits, fruit extracts, and fruit by-products have been mixed into food products, increasing their antioxidant capacity and extending their shelf life. Betalains, obtained from fruits, can be used as food colorants and demonstrate promising applications as a sensor in food packaging. This work reviews the most valuable components of the different fractions of this plant and emphasizes its most recent food applications, demonstrating its outstanding value.publishersversionpublishe

    Nitrogen Concentration Estimation in Tomato Leaves by VIS-NIR Non-Destructive Spectroscopy

    Get PDF
    Nitrogen concentration in plants is normally determined by expensive and time consuming chemical analyses. As an alternative, chlorophyll meter readings and N-NO3 concentration determination in petiole sap were proposed, but these assays are not always satisfactory. Spectral reflectance values of tomato leaves obtained by visible-near infrared spectrophotometry are reported to be a powerful tool for the diagnosis of plant nutritional status. The aim of the study was to evaluate the possibility and the accuracy of the estimation of tomato leaf nitrogen concentration performed through a rapid, portable and non-destructive system, in comparison with chemical standard analyses, chlorophyll meter readings and N-NO3 concentration in petiole sap. Mean reflectance leaf values were compared to each reference chemical value by partial least squares chemometric multivariate methods. The correlation between predicted values from spectral reflectance analysis and the observed chemical values showed in the independent test highly significant correlation coefficient (r = 0.94). The utilization of the proposed system, increasing efficiency, allows better knowledge of nutritional status of tomato plants, with more detailed and sharp information and on wider areas. More detailed information both in space and time is an essential tool to increase and stabilize crop quality levels and to optimize the nutrient use efficiency

    Mixed methods study protocol for combining stakeholder-led rapid evaluation with near real-time continuous registry data to facilitate evaluations of quality of care in intensive care units [version 1; peer review: awaiting peer review]

    Get PDF
    BACKGROUND: Improved access to healthcare in low- and middle-income countries (LMICs) has not equated to improved health outcomes. Absence or unsustained quality of care is partly to blame. Improving outcomes in intensive care units (ICUs) requires delivery of complex interventions by multiple specialties working in concert, and the simultaneous prevention of avoidable harms associated with the illness and the treatment interventions. Therefore, successful design and implementation of improvement interventions requires understanding of the behavioural, organisational, and external factors that determine care delivery and the likelihood of achieving sustained improvement. We aim to identify care processes that contribute to suboptimal clinical outcomes in ICUs located in LMICs and to establish barriers and enablers for improving the care processes. METHODS: Using rapid evaluation methods, we will use four data collection methods: 1) registry embedded indicators to assess quality of care processes and their associated outcomes; 2) process mapping to provide a preliminary framework to understand gaps between current and desired care practices; 3) structured observations of processes of interest identified from the process mapping and; 4) focus group discussions with stakeholders to identify barriers and enablers influencing the gap between current and desired care practices. We will also collect self-assessments of readiness for quality improvement. Data collection and analysis will be performed in parallel and through an iterative process across eight countries: Kenya, India, Malaysia, Nepal, Pakistan, South Africa, Uganda and Vietnam. CONCLUSIONS: The results of our study will provide essential information on where and how care processes can be improved to facilitate better quality of care to critically ill patients in LMICs; thus, reduce preventable mortality and morbidity in ICUs. Furthermore, understanding the rapid evaluation methods that will be used for this study will allow other researchers and healthcare professionals to carry out similar research in ICUs and other health services

    Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs

    Get PDF
    While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues
    • …
    corecore