89 research outputs found

    Branquitude, branquidade, privilégio branco: dissertaçÔes e teses sobre o tema no Brasil

    Get PDF
    Elencando para anĂĄlise 12 trabalhos cientĂ­ficos (4 teses e 8 dissertaçÔes), distribuĂ­dos entre anos de 2002 a 2018 na Biblioteca Brasileira de Teses e DissertaçÔes (BDTD), o presente artigo se configura em revisĂŁo sistemĂĄtica acerca da triangulação “branquitude”, “branquidade” e “privilĂ©gio branco”. A primeira parte do artigo apresenta notas iniciais acerca da metodologia empregada para coleta de dados e um panorama geral acerca do material em tela. Na sequĂȘncia sĂŁo apresentados os trabalhos mapeados, divididos em trĂȘs ĂĄreas, a saber, Psicologia, Educação e CiĂȘncias Sociais. Finalmente, reflete acerca da necessidade de se romper com o privilĂ©gio branco

    Melt Inclusion Vapour Bubbles: The Hidden Reservoir for Major and Volatile Elements

    Get PDF
    Olivine-hosted melt inclusions (MIs) provide samples of magmatic liquids and their dissolved volatiles from deep within the plumbing system. Inevitable post-entrapment modifications can lead to significant compositional changes in the glass and/or any contained bubbles. Re-heating is a common technique to reverse MI crystallisation; however, its effect on volatile contents has been assumed to be minor. We test this assumption using crystallised and glassy basaltic MIs, combined with Raman spectroscopy and 3D imaging, to investigate the changes in fluid and solid phases in the bubbles before and after re-heating. Before re-heating, the bubble contains CO2 gas and anhydrite (CaSO4) crystallites. The rapid diffusion of major and volatile elements from the melt during re-heating creates new phases within the bubble: SO2, gypsum, Fe-sulphides. Vapour bubbles hosted in naturally glassy MIs similarly contain a plethora of solid phases (carbonates, sulphates, and sulphides) that account for up to 84% of the total MI sulphur, 80% of CO2, and 14% of FeO. In both re-heated and naturally glassy MIs, bubbles sequester major and volatile elements that are components of the total magmatic budget and represent a “loss” from the glass. Analyses of the glass alone significantly underestimates the original magma composition and storage parameters

    High frequency oscillatory ventilation and prone positioning in a porcine model of lavage-induced acute lung injury

    Get PDF
    BACKGROUND: This animal study was conducted to assess the combined effects of high frequency oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and hemodynamics. METHODS: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the arterial oxygen partial pressure (PaO(2)) decreased to 55 ± 7 mmHg. The animals were ventilated in the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH(2)O and a tidal volume (V(T)) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV in prone position. After evaluation of prone positioning in group 2, the mean airway pressure (P(mean)) was increased by 3 cmH(2)O from 16 to 34 cmH(2)O every 20 minutes in both groups accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were ventilated supine with PCV, PEEP = 5 cm H(2)O, V(T )= 6 ml/kg. RESULTS: Combination of HFOV with prone positioning improves oxygenation and results in normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a significant (p < 0.05) lower P(mean )than HFOV and supine positioning. CONCLUSION: If ventilator induced lung injury is ameliorated by a lower P(mean), a combined treatment approach using HFOV and prone positioning might result in further lung protection

    Heart Rate-Corrected QT Interval Helps Predict Mortality after Intentional Organophosphate Poisoning

    Get PDF
    INTRODUCTION: In this study, we investigated the outcomes for patients with intentional organophosphate poisoning. Previous reports indicate that in contrast to normal heart rate-corrected QT intervals (QTc), QTc prolongation might be indicative of a poor prognosis for patients exposed to organophosphates. METHODS: We analyzed the records of 118 patients who were referred to Chang Gung Memorial Hospital for management of organophosphate poisoning between 2000 and 2011. Patients were grouped according to their initial QTc interval, i.e., normal (<0.44 s) or prolonged (>0.44 s). Demographic, clinical, laboratory, and mortality data were obtained for analysis. RESULTS: The incidence of hypotension in patients with prolonged QTc intervals was higher than that in the patients with normal QTc intervals (P = 0.019). By the end of the study, 18 of 118 (15.2%) patients had died, including 3 of 75 (4.0%) patients with normal QTc intervals and 15 of 43 (34.9%) patients with prolonged QTc intervals. Using multivariate-Cox-regression analysis, we found that hypotension (OR = 10.930, 95% CI = 2.961-40.345, P = 0.000), respiratory failure (OR = 4.867, 95% CI = 1.062-22.301, P = 0.042), coma (OR = 3.482, 95% CI = 1.184-10.238, P = 0.023), and QTc prolongation (OR = 7.459, 95% CI = 2.053-27.099, P = 0.002) were significant risk factors for mortality. Furthermore, it was revealed that non-survivors not only had longer QTc interval (503.00±41.56 versus 432.71±51.21 ms, P = 0.002), but also suffered higher incidences of hypotension (83.3 versus 12.0%, P = 0.000), shortness of breath (64 versus 94.4%, P = 0.010), bronchorrhea (55 versus 94.4%, P = 0.002), bronchospasm (50.0 versus 94.4%, P = 0.000), respiratory failure (94.4 versus 43.0%, P = 0.000) and coma (66.7 versus 11.0%, P = 0.000) than survivors. Finally, Kaplan-Meier analysis demonstrated that cumulative mortality was higher among patients with prolonged QTc intervals than among those with normal QTc intervals (Log-rank test, Chi-square test = 20.36, P<0.001). CONCLUSIONS: QTc interval helps predict mortality after intentional organophosphate poisoning

    TOMO-ETNA experiment at Etna volcano: Activities on land

    Get PDF
    In the present paper we describe the on-land field operations integrated in the TOMO-ETNA experiment carried out in June-November 2014 at Mt. Etna volcano and surrounding areas. This terrestrial campaign consists in the deployment of 90 short-period portable three-component seismic stations, 17 broadband seismometers and the coordination with 133 permanent seismic station belonging to Italy’s Istituto Nazionale di Geofisica e Vulcanologia (INGV). This temporary seismic network recorded active and passive seismic sources. Active seismic sources were generated by an array of air-guns mounted in the Spanish oceanographic vessel “Sarmiento de Gamboa” with a power capacity of up to 5200 cubic inches. In total more than 26,000 shots were fired and more than 450 local and regional earthquakes were recorded. We describe the whole technical procedure followed to guarantee the success of this complex seismic experiment. We started with the description of the location of the potential safety places to deploy the portable network and the products derived from this search (a large document including full characterization of the sites, owners and indication of how to arrive to them). A full technical description of the seismometers and seismic sources is presented. We show how the portable seismic network was deployed, maintained and recovered in different stages. The large international collaboration of this experiment is reflected in the participation of more than 75 researchers, technicians and students from different institutions and countries in the on-land activities. The main objectives of the experiment were achieved with great success.PublishedS04272SR. VULCANI - Servizi e ricerca per la SocietàJCR Journalope

    Alloplastische Implantate in der Kopf- und Halschirurgie.

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Controls on explosive-effusive volcanic eruption styles

    Get PDF
    One of the biggest challenges in volcanic hazard assessment is to understand how and why eruptive style changes within the same eruptive period or even from one eruption to the next at a given volcano. This review evaluates the competing processes that lead to explosive and effusive eruptions of silicic magmas. Eruptive style depends on a set of feedbacks involving interrelated magmatic properties and processes. Foremost of these are magma viscosity, gas loss, and external properties such as conduit geometry. Ultimately, these parameters control the speed at which magmas ascend, decompress and outgas en route to the surface, and thus determine eruptive style and evolution
    • 

    corecore