643 research outputs found

    The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer

    Get PDF
    Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 \pm 12%, a value statistically consistent with the one among TTS (58 \pm 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we study one isolated example of a transitional disk with an inner radius of \approx 0.1 AU (CFHT BD Tau 12, found via its relatively small mid-IR excess compared to most members of Taurus that have disks. We find that BDs are statistically found in regions of similar molecular gas surface density to those associated with stars. Furthermore, we find that the gas column density distribution is almost identical for stellar and substellar objects with and without disks.Comment: 8 page, 6 figures, Accepted in Astronomy & Astrophysics

    X-ray view of IC348 in the light of an updated cluster census

    Full text link
    We study the properties of the coronae of the low-mass stars in the young (~2-3Myr), nearby (~310pc) open cluster IC348 combining X-ray and optical/infrared data. The four existing Chandra observations of IC348 are merged, thus providing a deeper and spatially more complete X-ray view than previous X-ray studies of the cluster. We have compiled a comprehensive catalog of IC348 members taking into account recent updates to the cluster census. Our data collection comprises fundamental stellar parameters, infrared excess indicating the presence of disks, Halpha emission as a tracer of chromospheric emission or accretion and mass accretion rates. We have detected 290 X-ray sources in four merged Chandra exposures, of which 187 are associated with known cluster members. Only four of the X-ray sources are brown dwarfs (spectral type M6 and later). The detection rate is highest for diskless Class III stars and increases with stellar mass. This may be explained with higher X-ray luminosities for higher mass and later evolutionary stage that is evident in the X-ray luminosity functions. In particular, we find that for the lowest examined masses (0.1-0.25 Msun) there is a difference between the X-ray luminosity functions of accreting and non-accreting stars (classified on the basis of their Halpha emission strength) as well as those of disk-bearing and diskless stars (classified on the basis of the slope of the spectral energy distribution). These differences disappear for higher masses. This is related to our finding that the L_x/L_bol ratio is non-constant across the mass/luminosity sequence of IC348 with a decrease towards lower luminosity stars. Our analysis of an analogous stellar sample in the Orion Nebula Cluster suggests that the decline of L_x/L_ bol for young stars at the low-mass end of the stellar sequence is likely universal.Comment: Accepted for publication in Astronomy & Astrophysic

    A Survey for New Stars and Brown Dwarfs in the Ophiuchus Star-forming Complex

    Full text link
    We have performed a survey for new members of the Ophiuchus cloud complex using high-precision astrometry from the second data release of Gaia, proper motions measured with multi-epoch images from the Spitzer Space Telescope, and color-magnitude diagrams constructed with photometry from various sources. Through spectroscopy of candidates selected with those data, we have identified 155 new young stars. Based on available measurements of kinematics, we classify 102, 47, and six of those stars as members of Ophiuchus, Upper Sco, and other populations in Sco-Cen, respectively. We have also assessed the membership of all other stars in the vicinity of Ophiuchus that have spectroscopic evidence of youth from previous studies, arriving at a catalog of 373 adopted members of the cloud complex. For those adopted members, we have compiled mid-IR photometry from Spitzer and the Wide-field Infrared Survey Explorer} and have used mid-IR colors to identify and classify circumstellar disks. We find that 210 of the members show evidence of disks, including 48 disks that are in advanced stages of evolution. Finally, we have estimated the relative median ages of the populations near the Ophiuchus clouds and the surrounding Upper Sco association using absolute K-band magnitudes (M_K) based on Gaia} parallaxes. If we adopt an age 10 Myr for Upper Sco, then the relative values of M_K imply median ages of ~2 Myr for L1689 and embedded stars in L1688, 3-4 Myr for low-extinction stars near L1688, and ~6 Myr for the group containing rho Oph.Comment: 8 Pages, 10 figures, accepted in AJ, machine readable tables available at https://www.dropbox.com/sh/kxmumhgdpsfbevd/AACDjnB5FdmjmU4hzc08BxaIa?dl=

    A Survey for New Members of Taurus from Stellar to Planetary Masses

    Get PDF
    We present a large sample of new members of the Taurus star-forming region that extend from stellar to planetary masses. To identify candidate members at substellar masses, we have used color-magnitude diagrams and proper motions measured with several wide-field optical and infrared (IR) surveys. At stellar masses, we have considered the candidate members that were found in a recent analysis of high-precision astrometry from the Gaia mission. Using new and archival spectra, we have measured spectral types and assessed membership for these 161 candidates, 79 of which are classified as new members. Our updated census of Taurus now contains 519 known members. According to Gaia data, this census should be nearly complete for spectral types earlier than M6-M7 at A(J) = M9 and has uncovered the faintest known member in M-K, which should have a mass of similar to 3-10 M-Jup for ages of 1-10 Myr. We have used mid-IR photometry from the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer to determine whether the new members exhibit excess emission that would indicate the presence of circumstellar disks. The updated disk fraction for Taurus is similar to 0.7 at M3.5.NASA [80NSSC18 K0444, NNH14CK55B]; NASA; University of Texas at Austin McDonald Observatory; Pennsylvania State University; Department of Astronomy; National Development and Reform Commission; NSF; Alfred P. Sloan Foundation; U.S. Department of Energy; Japanese Monbukagakusho; Max Planck Society; Higher Education Funding Council for England; American Museum of Natural History; Astrophysical Institute Potsdam; University of Basel; University of Cambridge; Case Western Reserve University; University of Chicago; Drexel University; Fermilab; Institute for Advanced Study; Japan Participation Group; Johns Hopkins University; Joint Institute for Nuclear Astrophysics; Kavli Institute for Particle Astrophysics and Cosmology; Korean Scientist Group; Chinese Academy of Sciences; Los Alamos National Laboratory; Max-Planck-Institute for Astronomy; Max-Planck-Institute for Astrophysics; Ohio State University; University of Pittsburgh; University of Portsmouth; Princeton University; United States Naval Observatory; University of Washington; National Aeronautics and Space Administration [NNX08AR22G]; NSF [AST-1238877]; Eberly College of Science; Pennsylvania Space Grant Consortium; New Mexico State University; [U/17B/UA05]; [GN-2017B-Q-8]; [GN-2018B-Q-114]; [GN-2018B-FT-205]; [GN-2018B-FT-207]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    New Young Stars and Brown Dwarfs in the Upper Scorpius Association

    Full text link
    To improve the census of the Upper Sco association (~11 Myr, ~145 pc), we have identified candidate members using parallaxes, proper motions, and color-magnitude diagrams from several wide-field imaging surveys and have obtained optical and infrared spectra of several hundred candidates to measure their spectral types and assess their membership. We also have performed spectroscopy on a smaller sample of previously known or suspected members to refine their spectral types and evidence of membership. We have classified 530 targets as members of Upper Sco, 377 of which lack previous spectroscopy. Our new compilation of all known members of the association contains 1631 objects. Although the census of Upper Sco has expanded significantly over the last decade, there remain hundreds of candidates that lack spectroscopy. The precise parallaxes and proper motions from the second data release of Gaia should extend down to substellar masses in Upper Sco, which will greatly facilitate the identification of the undiscovered members.Comment: Astronomical Journal, in press; machine readable tables and fits spectra available at http://personal.psu.edu/kll207/usco.ta

    Spectroscopy of Candidate Members of the Eta Cha and MBM12 Young Associations

    Full text link
    We present an analysis of candidate members of the Eta Cha and MBM 12A young associations. For an area of 0.7 deg^2 toward Eta Cha, we have performed a search for members of the association by combining JHK_s photometry from 2MASS and i photometry from DENIS with followup optical spectroscopy at Magellan Observatory. We report the discovery of three new members with spectral types of M5.25-M5.75, corresponding to masses of 0.13-0.08 M_sun by theoretical evolutionary models. Two and three of these members were found independently by Lyo and coworkers and Song and coworkers, respectively. Meanwhile, no brown dwarfs were detected in Eta Cha down to the completeness limit of 0.015 M_sun. For MBM 12A, we have obtained spectra of three of the remaining candidate members that lacked spectroscopy at the end of the survey by Luhman, all of which are found to be field M dwarfs. Ogura and coworkers have recently presented four "probable" members of MBM 12A. However, two of these objects were previously classified as field dwarfs by the spectroscopy of Luhman. In this work, we find that the other two objects are field dwarfs as well.Comment: to be published in The Astrophysical Journal, 19 pages, 7 figure
    corecore