101 research outputs found
Electrocautery smoke exposure and efficacy of smoke evacuation systems in minimally invasive and open surgery: a prospective randomized study.
Worldwide, health care professionals working in operating rooms (ORs) are exposed to electrocautery smoke on a daily basis. Aims of this study were to determine composition and concentrations of electrocautery smoke in the OR using mass spectrometry. Prospective observational study at a tertiary care academic center, involving 122 surgical procedures of which 84 were 1:1 computer randomized to smoke evacuation system (SES) versus no SES use. Irritating, toxic, carcinogenic and mutagenic VOCs were observed in OR air, with some exceeding permissible exposure limits (OSHA/NIOSH). Mean total concentration of harmful compounds was 272.69 ppb (± 189 ppb) with a maximum total concentration of harmful substances of 8991 ppb (at surgeon level, no SES). Maximum total VOC concentrations were 1.6 ± 1.2 ppm (minimally-invasive surgery) and 2.1 ± 1.5 ppm (open surgery), and total maximum VOC concentrations were 1.8 ± 1.3 ppm at the OR table 'at surgeon level' and 1.4 ± 1.0 ppm 'in OR room air' away from the operating table. Neither difference was statistically significant. In open surgery, SES significantly reduced maximum concentrations of specific VOCs at surgeon level, including aromatics and aldehydes. Our data indicate relevant exposure of health care professionals to volatile organic compounds in the OR. Surgical technique and distance to cautery devices did not significantly reduce exposure. SES reduced exposure to specific harmful VOC's during open surgery.Trial Registration Number: NCT03924206 (clinicaltrials.gov)
Factors that determine penumbral tissue loss in acute ischaemic stroke
The goal of acute stroke treatment with intravenous thrombolysis or endovascular recanalization techniques is to rescue the penumbral tissue. Therefore, knowing the factors that influence the loss of penumbral tissue is of major interest. In this study we aimed to identify factors that determine the evolution of the penumbra in patients with proximal (M1 or M2) middle cerebral artery occlusion. Among these factors collaterals as seen on angiography were of special interest. Forty-four patients were included in this analysis. They had all received endovascular therapy and at least minimal reperfusion was achieved. Their penumbra was assessed with perfusion- and diffusion-weighted imaging. Perfusion-weighted imaging volumes were defined by circular singular value decomposition deconvolution maps (Tmax > 6 s) and results were compared with volumes obtained with non-deconvolved maps (time to peak > 4 s). Loss of penumbral volume was defined as difference of post- minus pretreatment diffusion-weighted imaging volumes and calculated in per cent of pretreatment penumbral volume. Correlations between baseline characteristics, reperfusion, collaterals, time to reperfusion and penumbral volume loss were assessed using analysis of covariance. Collaterals (P = 0.021), reperfusion (P = 0.003) and their interaction (P = 0.031) independently influenced penumbral tissue loss, but not time from magnetic resonance (P = 0.254) or from symptom onset (P = 0.360) to reperfusion. Good collaterals markedly slowed down and reduced the penumbra loss: in patients with thrombolysis in cerebral infarction 2 b-3 reperfusion and without any haemorrhage, 27% of the penumbra was lost with 8.9 ml/h with grade 0 collaterals, whereas 11% with 3.4 ml/h were lost with grade 1 collaterals. With grade 2 collaterals the penumbral volume change was −2% with −1.5 ml/h, indicating an overall diffusion-weighted imaging lesion reversal. We conclude that collaterals and reperfusion are the main factors determining loss of penumbral tissue in patients with middle cerebral artery occlusions. Collaterals markedly reduce and slow down penumbra loss. In patients with good collaterals, time to successful reperfusion accounts only for a minor fraction of penumbra loss. These results support the hypothesis that good collaterals extend the time window for acute stroke treatmen
Dysregulation of DGCR6 and DGCR6L: psychopathological outcomes in chromosome 22q11.2 deletion syndrome
Chromosome 22q11.2 deletion syndrome (22q11DS) is the most common microdeletion syndrome in humans. It is typified by highly variable symptoms, which might be explained by epigenetic regulation of genes in the interval. Using computational algorithms, our laboratory previously predicted that DiGeorge critical region 6 (DGCR6), which lies within the deletion interval, is imprinted in humans. Expression and epigenetic regulation of this gene have not, however, been examined in 22q11DS subjects. The purpose of this study was to determine if the expression levels of DGCR6 and its duplicate copy DGCR6L in 22q11DS subjects are associated with the parent-of-origin of the deletion and childhood psychopathologies. Our investigation showed no evidence of parent-of-origin-related differences in expression of both DGCR6 and DGCR6L. However, we found that the variability in DGCR6 expression was significantly greater in 22q11DS children than in age and gender-matched control individuals. Children with 22q11DS who had anxiety disorders had significantly lower DGCR6 expression, especially in subjects with the deletion on the maternal chromosome, despite the lack of imprinting. Our findings indicate that epigenetic mechanisms other than imprinting contribute to the dysregulation of these genes and the associated childhood psychopathologies observed in individuals with 22q11DS. Further studies are now needed to test the usefulness of DGCR6 and DGCR6L expression and alterations in the epigenome at these loci in predicting childhood anxiety and associated adult-onset pathologies in 22q11DS subjects
The Imprinted Gene DIO3 Is a Candidate Gene for Litter Size in Pigs
Genomic imprinting is an important epigenetic phenomenon, which on the phenotypic level can be detected by the difference between the two heterozygote classes of a gene. Imprinted genes are important in both the development of the placenta and the embryo, and we hypothesized that imprinted genes might be involved in female fertility traits. We therefore performed an association study for imprinted genes related to female fertility traits in two commercial pig populations. For this purpose, 309 SNPs in fifteen evolutionary conserved imprinted regions were genotyped on 689 and 1050 pigs from the two pig populations. A single SNP association study was used to detect additive, dominant and imprinting effects related to four reproduction traits; total number of piglets born, the number of piglets born alive, the total weight of the piglets born and the total weight of the piglets born alive. Several SNPs showed significant () additive and dominant effects and one SNP showed a significant imprinting effect. The SNP with a significant imprinting effect is closely linked to DIO3, a gene involved in thyroid metabolism. The imprinting effect of this SNP explained approximately 1.6% of the phenotypic variance, which corresponded to approximately 15.5% of the additive genetic variance. In the other population, the imprinting effect of this QTL was not significant (), but had a similar effect as in the first population. The results of this study indicate a possible association between the imprinted gene DIO3 and female fertility traits in pigs
Transcriptome-Wide Identification of Novel Imprinted Genes in Neonatal Mouse Brain
Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting
The Human Retinoblastoma Gene Is Imprinted
Genomic imprinting is an epigenetic process leading to parent-of-origin–specific DNA methylation and gene expression. To date, ∼60 imprinted human genes are known. Based on genome-wide methylation analysis of a patient with multiple imprinting defects, we have identified a differentially methylated CpG island in intron 2 of the retinoblastoma (RB1) gene on chromosome 13. The CpG island is part of a 5′-truncated, processed pseudogene derived from the KIAA0649 gene on chromosome 9 and corresponds to two small CpG islands in the open reading frame of the ancestral gene. It is methylated on the maternal chromosome 13 and acts as a weak promoter for an alternative RB1 transcript on the paternal chromosome 13. In four other KIAA0649 pseudogene copies, which are located on chromosome 22, the two CpG islands have deteriorated and the CpG dinucleotides are fully methylated. By analysing allelic RB1 transcript levels in blood cells, as well as in hypermethylated and 5-aza-2′-deoxycytidine–treated lymphoblastoid cells, we have found that differential methylation of the CpG island skews RB1 gene expression in favor of the maternal allele. Thus, RB1 is imprinted in the same direction as CDKN1C, which operates upstream of RB1. The imprinting of two components of the same pathway indicates that there has been strong evolutionary selection for maternal inhibition of cell proliferation
Factors associated with COVID-19 non-vaccination in Switzerland: a nationwide study
Objectives: We compared socio-demographic characteristics, health-related variables, vaccination-related beliefs and attitudes, vaccination acceptance, and personality traits of individuals who vaccinated against COVID-19 and who did not vaccinate by December 2021. Methods: This cross-sectional study used data of 10,642 adult participants from the Corona Immunitas eCohort, an age-stratified random sample of the population of several cantons in Switzerland. We used multivariable logistic regression models to explore associations of vaccination status with socio-demographic, health, and behavioral factors. Results: Non-vaccinated individuals represented 12.4% of the sample. Compared to vaccinated individuals, non-vaccinated individuals were more likely to be younger, healthier, employed, have lower income, not worried about their health, have previously tested positive for SARS-CoV-2 infection, express lower vaccination acceptance, and/or report higher conscientiousness. Among non-vaccinated individuals, 19.9% and 21.3% had low confidence in the safety and effectiveness of SARS-CoV-2 vaccine, respectively. However, 29.1% and 26.7% of individuals with concerns about vaccine effectiveness and side effects at baseline, respectively vaccinated during the study period. Conclusion: In addition to known socio-demographic and health-related factors, non-vaccination was associated with concerns regarding vaccine safety and effectiveness
Factors Associated With COVID-19 Non-Vaccination in Switzerland: A Nationwide Study
Objectives: We compared socio-demographic characteristics, health-related variables, vaccination-related beliefs and attitudes, vaccination acceptance, and personality traits of individuals who vaccinated against COVID-19 and who did not vaccinate by December 2021. Methods: This cross-sectional study used data of 10,642 adult participants from the Corona Immunitas eCohort, an age-stratified random sample of the population of several cantons in Switzerland. We used multivariable logistic regression models to explore associations of vaccination status with socio-demographic, health, and behavioral factors. Results: Non-vaccinated individuals represented 12.4% of the sample. Compared to vaccinated individuals, non-vaccinated individuals were more likely to be younger, healthier, employed, have lower income, not worried about their health, have previously tested positive for SARS-CoV-2 infection, express lower vaccination acceptance, and/or report higher conscientiousness. Among non-vaccinated individuals, 19.9% and 21.3% had low confidence in the safety and effectiveness of SARS-CoV-2 vaccine, respectively. However, 29.1% and 26.7% of individuals with concerns about vaccine effectiveness and side effects at baseline, respectively vaccinated during the study period. Conclusion: In addition to known socio-demographic and health-related factors, non-vaccination was associated with concerns regarding vaccine safety and effectiveness
Genome-Wide Analysis Reveals a Complex Pattern of Genomic Imprinting in Mice
Parent-of-origin–dependent gene expression resulting from genomic imprinting plays an important role in modulating complex traits ranging from developmental processes to cognitive abilities and associated disorders. However, while gene-targeting techniques have allowed for the identification of imprinted loci, very little is known about the contribution of imprinting to quantitative variation in complex traits. Most studies, furthermore, assume a simple pattern of imprinting, resulting in either paternal or maternal gene expression; yet, more complex patterns of effects also exist. As a result, the distribution and number of different imprinting patterns across the genome remain largely unexplored. We address these unresolved issues using a genome-wide scan for imprinted quantitative trait loci (iQTL) affecting body weight and growth in mice using a novel three-generation design. We identified ten iQTL that display much more complex and diverse effect patterns than previously assumed, including four loci with effects similar to the callipyge mutation found in sheep. Three loci display a new phenotypic pattern that we refer to as bipolar dominance, where the two heterozygotes are different from each other while the two homozygotes are identical to each other. Our study furthermore detected a paternally expressed iQTL on Chromosome 7 in a region containing a known imprinting cluster with many paternally expressed genes. Surprisingly, the effects of the iQTL were mostly restricted to traits expressed after weaning. Our results imply that the quantitative effects of an imprinted allele at a locus depend both on its parent of origin and the allele it is paired with. Our findings also show that the imprinting pattern of a locus can be variable over ontogenetic time and, in contrast to current views, may often be stronger at later stages in life
Postnatal Survival of Mice with Maternal Duplication of Distal Chromosome 7 Induced by a Igf2/H19 Imprinting Control Region Lacking Insulator Function
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome
- …