1,288 research outputs found

    Transport of flexible chiral objects in a uniform shear flow

    Get PDF
    The transport of slightly deformable chiral objects in a uniform shear flow is investigated. Depending on the equilibrium configuration one finds up to four different asymptotic states that can be distinguished by a lateral drift velocity of their center of mass, a rotational motion about the center of mass and deformations of the object. These deformations influence the magnitudes of the principal axes of the second moment tensor of the considered object and also modify a scalar index characterizing its chirality. Moreover, the deformations induced by the shear flow are essential for the phenomenon of dynamical symmetry breaking: Objects that are achiral under equilibrium conditions may dynamically acquire chirality and consequently experience a drift in the lateral direction.Comment: 25 pages, 16 figure

    Magnetic nanostructures by adaptive twinning in strained epitaxial films

    Full text link
    We exploit the intrinsic structural instability of the Fe70Pd30 magnetic shape memory alloy to obtain functional epitaxial films exhibiting a self-organized nanostructure. We demonstrate that coherent epitaxial straining by 54% is possible. The combination of thin film experiments and large-scale first-principles calculations enables us to establish a lattice relaxation mechanism, which is not expected for stable materials. We identify a low twin boundary energy compared to a high elastic energy as key prerequisite for the adaptive nanotwinning. Our approach is versatile as it allows to control both, nanostructure and intrinsic properties for ferromagnetic, ferroelastic and ferroelectric materials.Comment: Final version. Supplementary information available on request or at the publisher's websit

    Scalable production of iPSC-derived human neurons to identify tau-lowering compounds by high-content screening

    Get PDF
    Lowering total tau levels is an attractive therapeutic strategy for Alzheimer's disease and other tauopathies. High-throughput screening in neurons derived from human induced pluripotent stem cells (iPSCs) is a powerful tool to identify tau-targeted therapeutics. However, such screens have been hampered by heterogeneous neuronal production, high cost and low yield, and multi-step differentiation procedures. We engineered an isogenic iPSC line that harbors an inducible neurogenin 2 transgene, a transcription factor that rapidly converts iPSCs to neurons, integrated at the AAVS1 locus. Using a simplified two-step protocol, we differentiated these iPSCs into cortical glutamatergic neurons with minimal well-to-well variability. We developed a robust high-content screening assay to identify tau-lowering compounds in LOPAC and identified adrenergic receptors agonists as a class of compounds that reduce endogenous human tau. These techniques enable the use of human neurons for high-throughput screening of drugs to treat neurodegenerative disease

    Dowker Spaces Revisited

    Get PDF

    Wavelength Tunability of Ion-bombardment Induced Ripples on Sapphire

    Full text link
    A study of ripple formation on sapphire surfaces by 300-2000 eV Ar+ ion bombardment is presented. Surface characterization by in-situ synchrotron grazing incidence small angle x-ray scattering and ex-situ atomic force microscopy is performed in order to study the wavelength of ripples formed on sapphire (0001) surfaces. We find that the wavelength can be varied over a remarkably wide range-nearly two orders of magnitude-by changing the ion incidence angle. Within the linear theory regime, the ion induced viscous flow smoothing mechanism explains the general trends of the ripple wavelength at low temperature and incidence angles larger than 30. In this model, relaxation is confined to a few-nm thick damaged surface layer. The behavior at high temperature suggests relaxation by surface diffusion. However, strong smoothing is inferred from the observed ripple wavelength near normal incidence, which is not consistent with either surface diffusion or viscous flow relaxation.Comment: Revtex4, 19 pages, 10 figures with JPEG forma

    Inorganic pyrophosphatase in uncultivable hemotrophic mycoplasmas: identification and properties of the enzyme from Mycoplasma suis

    Get PDF
    BACKGROUND: Mycoplasma suis belongs to a group of highly specialized hemotrophic bacteria that attach to the surface of host erythrocytes. Hemotrophic mycoplasmas are uncultivable and the genomes are not sequenced so far. Therefore, there is a need for the clarification of essential metabolic pathways which could be crucial barriers for the establishment of an in vitro cultivation system for these veterinary significant bacteria.Inorganic pyrophosphatases (PPase) are important enzymes that catalyze the hydrolysis of inorganic pyrophosphate PPi to inorganic phosphate Pi. PPases are essential and ubiquitous metal-dependent enzymes providing a thermodynamic pull for many biosynthetic reactions. Here, we describe the identification, recombinant production and characterization of the soluble (s)PPase of Mycoplasma suis. RESULTS: Screening of genomic M. suis libraries was used to identify a gene encoding the M. suis inorganic pyrophosphatase (sPPase). The M. suis sPPase consists of 164 amino acids with a molecular mass of 20 kDa. The highest identity of 63.7% was found to the M. penetrans sPPase. The typical 13 active site residues as well as the cation binding signature could be also identified in the M. suis sPPase. The activity of the M. suis enzyme was strongly dependent on Mg2+ and significantly lower in the presence of Mn2+ and Zn2+. Addition of Ca2+ and EDTA inhibited the M. suis sPPase activity. These characteristics confirmed the affiliation of the M. suis PPase to family I soluble PPases. The highest activity was determined at pH 9.0. In M. suis the sPPase builds tetramers of 80 kDa which were detected by convalescent sera from experimentally M. suis infected pigs. CONCLUSION: The identification and characterization of the sPPase of M. suis is an additional step towards the clarification of the metabolism of hemotrophic mycoplasmas and, thus, important for the establishment of an in vitro cultivation system. As an antigenic and conserved protein the M. suis sPPase could in future be further analyzed as a diagnostic antigen

    Nanoscale plasmonic phenomena in CVD-grown MoS2 monolayer revealed by ultra- broadband synchrotron radiation based nano-FTIR spectroscopy and near-field microscopy

    Get PDF
    Nanoscale plasmonic phenomena observed in single and bi-layers of molybdenum disulfide (MoS2) on silicon dioxide (SiO2) are reported. A scattering type scanning near-field optical microscope (s-SNOM) with a broadband synchrotron radiation (SR) infrared source was used. We also present complementary optical mapping using tunable CO2-laser radiation. Specifically, there is a correlation of the topography of well-defined MoS2 islands grown by chemical vapor deposition, as determined by atomic force microscopy, with the infrared (IR) signature of MoS2. The influence of MoS2 islands on the SiO2 phonon resonance is discussed. The results reveal the plasmonic character of the MoS2 structures and their interaction with the SiO2 phonons leading to an enhancement of the hybridized surface plasmon-phonon mode. A theoretical analysis shows that, in the case of monolayer islands, the coupling of the MoS2 optical plasmon mode to the SiO2 surface phonons does not affect the infrared spectrum significantly. For two-layer MoS2, the coupling of the extra inter-plane acoustic plasmon mode with the SiO2 surface transverse phonon leads to a remarkable increase of the surface phonon peak at 794 cm−1. This is in agreement with the experimental data. These results show the capability of the s-SNOM technique to study local multiple excitations in complex non- homogeneous structures

    Beyond Zeno: Approaching Infinite Temperature upon Repeated Measurements

    Get PDF
    The influence of repeated projective measurements on the dynamics of the state of a quantum system is studied in dependence of the time lag τ\tau between successive measurements. In the limit of infinitely many measurements of the occupancy of a single state the total system approaches a uniform state. The asymptotic approach to this state is exponential in the case of finite Hilbert space dimension. The rate characterizing this approach undergoes a sharp transition from a monotonically increasing to an erratically varying function of the time between subsequent measurements
    • 

    corecore