240 research outputs found

    Not only mosses: lemming winter diets as described by DNA metabarcoding

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Polar Biology. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00300-017-2114-3. The temporal dynamics of most tundra food webs are shaped by the cyclic population dynamics of lemmings. While processes during winter may be behind the recent disruptions of lemming cycles, lemming winter ecology is poorly known. We present here the first DNA metabarcoding data on the winter diet of Norwegian lemmings (Lemmus lemmus), based on feces collected after a winter of population increase. Prostrate willows, mosses, and graminoids dominated the species winter diet, indicating that the conventional idea of lemmings as moss‐specialists should be revised. The behavior of lemming‐plant models in theoretical studies is conditional on the assumptions of mosses being their main winter food item. As shrubs have been excluded from the framework of these models, incorporating them in future modeling studies should nuance our understanding on how plants affect lemmings. We also sampled diet of a few individuals found dead on top of the snow. These individuals had relatively empty stomachs and had, prior to death, relied heavily on mosses. This apparent lack of abundant good quality indicates spatial heterogeneity in local food availability during the population increase phase

    Geometry-material coordination for passive adaptive solar morphing envelopes

    Get PDF
    The cost-intensive and mechanical complexity natures of the adaptive facades of the past decades drifted designers and researchers’ interest towards passive material-based actuation systems. Architectural applications using the latter showed, however, a few limitations restricting the output possibility space to options that rely entirely on one material’s phase characteristic. This study aims to investigate the potential of expanding a shape memory alloy-actuated facade’s output from one that is limited and hardly controllable in the case of entirely passive actuation to one that can produce a specific desired performative target. This is explored through coordinating between geometry movement connections of an adaptive component of four integrated shape memory alloys, which work on tailoring the geometry-material-climate relations of the responsive system. The research findings suggest that the integration of geometry, material, and their connections in the design of a SMA solar morphing envelope lead to the development of a wider range of behavioural system outputs. The variety instilled through these added dimensions promoted diversity and adaptability of output for a flexible range of responses and higher performative gains

    Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding

    Get PDF
    DNA barcoding should provide rapid, accurate and automatable species identifications by using a standardized DNA region as a tag. Based on sequences available in GenBank and sequences produced for this study, we evaluated the resolution power of the whole chloroplast trnL (UAA) intron (254–767 bp) and of a shorter fragment of this intron (the P6 loop, 10–143 bp) amplified with highly conserved primers. The main limitation of the whole trnL intron for DNA barcoding remains its relatively low resolution (67.3% of the species from GenBank unambiguously identified). The resolution of the P6 loop is lower (19.5% identified) but remains higher than those of existing alternative systems. The resolution is much higher in specific contexts such as species originating from a single ecosystem, or commonly eaten plants. Despite the relatively low resolution, the whole trnL intron and its P6 loop have many advantages: the primers are highly conserved, and the amplification system is very robust. The P6 loop can even be amplified when using highly degraded DNA from processed food or from permafrost samples, and has the potential to be extensively used in food industry, in forensic science, in diet analyses based on feces and in ancient DNA studies

    Five thousand years of tropical lake sediment DNA records from Benin

    Get PDF
    Until now, sedimentary DNA (sedDNA) studies have only focused on cold and temperate regions were DNA is relatively well preserved. Consequently, the tropics, where vegetation is hyperdiverse and natural archives are rare, have been neglected and deserve attention. In this study, we used next-generation sequencing to barcode sedDNA from Lake Sele, localized in the tropical lowlands of Benin (Africa), and compared the taxonomic diversity detected by DNA analyses with pollen assemblages. Plant sedDNA was successfully amplified from 33 of the 34 successfully extracted samples. In total, 43 taxa were identified along the 5,000 years spanned by the sediment: 22 taxa were identified at the family level and 21 at the genus level. The plant diversity recovered through sedDNA from Lake Sele showed a specific local signal and limited overlapping with pollen. Introduced plants, grown and cultivated close to the water, such as sweet potato, were also well recorded by sedDNA. It appears, therefore, to be a promising approach to studying past diversity in tropical regions, and could help in tracking the introduction and history of agriculture. This is the first time this method has been used in the field of domestication and dissemination of several specific crops, and the results are very encouraging

    Lake sedimentary DNA accurately records 20th Century introductions of exotic conifers in Scotland

    Get PDF
    Summary:Sedimentary DNA (sedDNA) has recently emerged as a new proxy for reconstructing past vegetation, but its taphonomy, source area and representation biases need better assessment. We investigated how sedDNA in recent sediments of two small Scottish lakes reflects a major vegetation change, using well-documented 20th Century plantations of exotic conifers as an experimental system. We used next-generation sequencing to barcode sedDNA retrieved from subrecent lake sediments. For comparison, pollen was analysed from the same samples. The sedDNA record contains 73 taxa (mainly genus or species), all but one of which are present in the study area. Pollen and sedDNA shared 35% of taxa, which partly reflects a difference in source area. More aquatic taxa were recorded in sedDNA, whereas taxa assumed to be of regional rather than local origin were recorded only as pollen. The chronology of the sediments and planting records are well aligned, and sedDNA of exotic conifers appears in high quantities with the establishment of plantations around the lakes. SedDNA recorded other changes in local vegetation that accompanied afforestation. There were no signs of DNA leaching in the sediments or DNA originating from pollen

    Authenticated DNA from Ancient Wood Remains

    Get PDF
    ‱ Background The reconstruction of biological processes and human activities during the last glacial cycle relies mainly on data from biological remains. Highly abundant tissues, such as wood, are candidates for a genetic analysis of past populations. While well-authenticated DNA has now been recovered from various fossil remains, the final ‘proof' is still missing for wood, despite some promising studies. ‱ Scope The goal of this study was to determine if ancient wood can be analysed routinely in studies of archaeology and palaeogenetics. An experiment was designed which included blind testing, independent replicates, extensive contamination controls and rigorous statistical tests. Ten samples of ancient wood from major European forest tree genera were analysed with plastid DNA markers. ‱ Conclusions Authentic DNA was retrieved from wood samples up to 1000 years of age. A new tool for real-time vegetation history and archaeology is ready to us

    Sources of variation in small rodent trophic niche: New insights from DNA metabarcoding and stable isotope analysis

    Get PDF
    Intraspecific competition for food is expected to increase the trophic niche width of consumers, defined here as their diet diversity, but this process has been little studied in herbivores. Population densities of small rodents fluctuate greatly, providing a good study model to evaluate effects of competition on trophic niche. We studied resource use in five arctic small rodent populations of four species combining DNA metabarcoding of stomach contents and stable isotope analysis (SIA). Our results suggest that for small rodents, the most pronounced effect of competition on trophic niche is due to increased use of secondary habitats and to habitat-specific diets, rather than an expansion of trophic niche in primary habitat. DNA metabarcoding and SIA provided complementary information about the composition and temporal variation of herbivore diets. Combing these two approaches requires caution, as the underlying processes causing observed patterns may differ between methodologies due to different spatiotemporal scales. The final version of this research has been published in Isotopes in Environmental and Health Studies. © 2014 Taylor & Franci

    Clitellate worms (Annelida) in late-glacial and Holocene sedimentary DNA records from the Polar Urals and northern Norway

    Get PDF
    While there are extensive macro‐ and microfossil records of a range of plants and animals from the Quaternary, earthworms and their close relatives amongst annelids are not preserved as fossils and therefore the knowledge of their past distributions is limited. This lack of fossils means that clitellate worms (Annelida) are currently underused in palaeoecological research, even though they can provide valuable information about terrestrial and aquatic environmental conditions. Their DNA might be preserved in sediments, which offers an alternative method for detection. Here we analyse lacustrine sediments from lakes in the Polar Urals, Arctic Russia, covering the period 24 000–1300 cal. a BP, and NE Norway, covering 10 700–3300 cal. a BP, using a universal mammal 16S rDNA marker. While mammals were recorded using the marker (reindeer was detected twice in the Polar Urals core at 23 000 and 14 000 cal. a BP, and four times in the Norwegian core at 11 000 cal. a BP and between 3600–3300 cal. a BP), worm extracellular DNA ‘bycatch’ was rather high. In this paper we present the first reported worm detection from ancient DNA. Our results demonstrate that both aquatic and terrestrial clitellates can be identified in late‐Quaternary lacustrine sediments, and the ecological information retrievable from this group warrants further research with a more targeted approach.publishedVersio

    Analysing diet of small herbivores: the efficiency of DNA barcoding coupled with high-throughput pyrosequencing for deciphering the composition of complex plant mixtures

    Get PDF
    Background In order to understand the role of herbivores in trophic webs, it is essential to know what they feed on. Diet analysis is, however, a challenge in many small herbivores with a secretive life style. In this paper, we compare novel (high-throughput pyrosequencing) DNA barcoding technology for plant mixture with traditional microhistological method. We analysed stomach contents of two ecologically important subarctic vole species, Microtus oeconomus and Myodes rufocanus, with the two methods. DNA barcoding was conducted using the P6-loop of the chloroplast trnL (UAA) intron. Results Although the identified plant taxa in the diets matched relatively well between the two methods, DNA barcoding gave by far taxonomically more detailed results. Quantitative comparison of results was difficult, mainly due to low taxonomic resolution of the microhistological method, which also in part explained discrepancies between the methods. Other discrepancies were likely due to biases mostly in the microhistological analysis. Conclusion We conclude that DNA barcoding opens up for new possibilities in the study of plant-herbivore interactions, giving a detailed and relatively unbiased picture of food utilization of herbivores

    Holocene floristic diversity and richness in northeast Norway revealed by sedimentary ancient DNA (sedaDNA) and pollen

    Get PDF
    Source at https://doi.org/10.1111/bor.12357We present a Holocene record of floristic diversity and environmental change for the central Varanger Peninsula, Finnmark, based on ancient DNA extracted from the sediments of a small lake (sedaDNA). The record covers the period c. 10 700 to 3300 cal. a BP and is complemented by pollen data. Measures of species richness, sample evenness and beta diversity were calculated based on sedaDNA sampling intervals and 1000‐year time windows. We identified 101 vascular plant and 17 bryophyte taxa, a high proportion (86%) of which are still growing within the region today. The high species richness (>60 taxa) observed in the Early Holocene, including representatives from all important plant functional groups, shows that modern shrub‐tundra communities, and much of their species complement, were in place as early as c. 10 700 cal. a BP. We infer that postglacial colonization of the area occurred prior to the full Holocene, during the Pleistocene‐Holocene transition, Younger Dryas stadial or earlier. Abundant DNA of the extra‐limital aquatic plant Callitriche hermaphroditica suggests it expanded its range northward between c. 10 200 and 9600 cal. a BP, when summers were warmer than present. High values of Pinus DNA occur throughout the record, but we cannot say with certainty if they represent prior local presence; however, pollen influx values >500 grains cm−2 a−1 between c. 8000 and 7300 cal. a BP strongly suggest the presence of pine woodland during this period. As the site lies beyond the modern tree limit of pine, it is likely that this expansion also reflects a response to warmer Early Holocene summers
    • 

    corecore