557 research outputs found

    The chemokine CXCL13 in acute neuroborreliosis

    Get PDF
    Objective Recent studies have suggested an important role of the B cell chemoattractant CXCL13 in acute neuroborreliosis (NB). Our aim was to confirm the diagnostic role of CXCL13 and to evaluate its relevance as a therapy response and disease activity marker in NB. Methods CXCL13 was measured in cerebrospinal fluid (CSF) and serum of patients with NB (n = 28), systemic borreliosis (SB, n = 9), Guillaine-Barre syndrome (GBS, n = 11), Bell's palsy (BP, n = 19), other cranial nerve palsies (CNP, n = 5), cephalgia (C, n = 20), bacterial CNS infections (B-CNS-I, n = 16) and viral CNS infections (V-CNS-I, n = 18). For follow-up studies, serial sample pairs were evaluated from 25 patients with NB (n = 56), 11 with B-CNS-I (n = 25) and 14 with V-CNS-I (n = 36). Results CSF-CXCL13 was significantly elevated in NB compared with other neurological diseases (p<0.001). Using receiver operating characteristic analysis, 337 ng/g was determined as a cut-off with a sensitivity of 96.4% and a specificity of 96.9%. Of all the parameters investigated, CSF CXCL13 showed the fastest response to antibiotic therapy, decreasing significantly (p = 0.008) within 1 week. In untreated patients, CSF CXCL13 was elevated in patients with a short duration of disease. Borrelia burgdorferi antibody index showed no significant (p = 0.356) change over follow-up. Conclusions The study confirms the relevance of CXCL13 as a diagnostic biomarker of NB and suggests that CSF CXCL13 in NB is linked to duration of disease and could be a marker of disease activity and response to antibiotic therapy

    CSF Concentrations of cAMP and cGMP Are Lower in Patients with Creutzfeldt-Jakob Disease but Not Parkinson's Disease and Amyotrophic Lateral Sclerosis

    Get PDF
    The cyclic nucleotides cyclic adenosine-3',5'-monophosphate (cAMP) and cyclic guanosine-3',5'-monophosphate (cGMP) are important second messengers and are potential biomarkers for Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease (CJD). Here, we investigated by liquid chromatography/tandem mass spectrometry (LC-MS/MS) the cerebrospinal fluid (CSF) concentrations of cAMP and cGMP of 82 patients and evaluated their diagnostic potency as biomarkers. For comparison with a well-accepted biomarker, we measured tau concentrations in CSF of CJD and control patients. CJD patients (n = 15) had lower cAMP (-70%) and cGMP (-55%) concentrations in CSF compared with controls (n = 11). There was no difference in PD, PD dementia (PDD) and ALS cases. Receiver operating characteristic (ROC) curve analyses confirmed cAMP and cGMP as valuable diagnostic markers for CJD indicated by the area under the curve (AUC) of 0.86 (cAMP) and 0.85 (cGMP). We calculated a sensitivity of 100% and specificity of 64% for cAMP and a sensitivity of 67% and specificity of 100% for cGMP. The combination of both nucleotides increased the sensitivity to 80% and specificity to 91% for the term cAMPxcGMP (AUC 0.92) and to 93% and 100% for the ratio tau/cAMP (AUC 0.99). We conclude that the CSF determination of cAMP and cGMP may easily be included in the diagnosis of CJD and could be helpful in monitoring disease progression as well as in therapy control

    Onset of dissipation in ballistic atomic wires

    Get PDF
    Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-mode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.Comment: Revtex4, 4 pages, 3 fig

    Roadmap and standard operating procedures for biobanking and discovery of neurochemical markers in ALS

    Get PDF
    Despite major advances in deciphering the neuropathological hallmarks of amyotrophic lateral sclerosis (ALS), validated neurochemical biomarkers for monitoring disease activity, earlier diagnosis, defining prognosis and unlocking key pathophysiological pathways are lacking. Although several candidate biomarkers exist, translation into clinical application is hindered by small sample numbers, especially longitudinal, for independent verification. This review considers the potential routes to the discovery of neurochemical markers in ALS, and provides a consensus statement on standard operating procedures that will facilitate multicenter collaboration, validation and ultimately clinical translation

    Implementation of a population-based epidemiological rare disease registry: study protocol of the amyotrophic lateral sclerosis (ALS) - registry Swabia

    Get PDF
    BACKGROUND: The social and medical impact of rare diseases is increasingly recognized. Amyotrophic lateral sclerosis (ALS) is the most prevalent of the motor neuron diseases. It is characterized by rapidly progressive damage to the motor neurons with a survival of 2–5 years for the majority of patients. The objective of this work is to describe the study protocol and the implementation steps of the amyotrophic lateral sclerosis (ALS) registry Swabia, located in the South of Germany. METHODS/DESIGN: The ALS registry Swabia started in October 2010 with both, the retrospective (01.10.2008-30.09.2010) and prospective (from 01.10.2010) collection of ALS cases, in a target population of 8.6 million persons in Southern Germany. In addition, a population based case–control study was implemented based on the registry that also included the collection of various biological materials. Retrospectively, 420 patients (222 men and 198 women) were identified. Prospectively data of ALS patients were collected, of which about 70% agreed to participate in the population-based case–control study. All participants in the case–control study provided also a blood sample. The prospective part of the study is ongoing. DISCUSSION: The ALS registry Swabia has been implemented successfully. In rare diseases such as ALS, the collaboration of registries, the comparison with external samples and biorepositories will facilitate to identify risk factors and to further explore the potential underlying pathophysiological mechanisms

    TDP-43 loss of function inhibits endosomal trafficking and alters trophic signaling in neurons

    No full text
    Nuclear clearance of TDP-43 into cytoplasmic aggregates is a key driver of neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD), but the mechanisms are unclear. Here, we show that TDP-43 knockdown specifically reduces the number and motility of RAB11-positive recycling endosomes in dendrites, while TDP-43 overexpression has the opposite effect. This is associated with delayed transferrin recycling in TDP-43-knockdown neurons and decreased 2-transferrin levels in patient CSF. Whole proteome quantification identified the upregulation of the ESCRT component VPS4B upon TDP-43 knockdown in neurons. Luciferase reporter assays and chromatin immunoprecipitation suggest that TDP-43 represses VPS4B transcription. Preventing VPS4B upregulation or expression of its functional antagonist ALIX restores trafficking of recycling endosomes. Proteomic analysis revealed the broad reduction in surface expression of key receptors upon TDP-43 knockdown, including ErbB4, the neuregulin 1 receptor. TDP-43 knockdown delays the surface delivery of ErbB4. ErbB4 overexpression, but not neuregulin 1 stimulation, prevents dendrite loss upon TDP-43 knockdown. Thus, impaired recycling of ErbB4 and other receptors to the cell surface may contribute to TDP-43-induced neurodegeneration by blocking trophic signaling

    Disease Severity and Progression in Progressive Supranuclear Palsy and Multiple System Atrophy: Validation of the NNIPPS – PARKINSON PLUS SCALE

    Get PDF
    BACKGROUND The Natural History and Neuroprotection in Parkinson Plus Syndromes (NNIPPS) study was a large phase III randomized placebo-controlled trial of riluzole in Progressive Supranuclear Palsy (PSP, n = 362) and Multiple System Atrophy (MSA, n = 398). To assess disease severity and progression, we constructed and validated a new clinical rating scale as an ancillary study. METHODS AND FINDINGS Patients were assessed at entry and 6-montly for up to 3 years. Evaluation of the scale's psychometric properties included reliability (n = 116), validity (n = 760), and responsiveness (n = 642). Among the 85 items of the initial scale, factor analysis revealed 83 items contributing to 15 clinically relevant dimensions, including Activity of daily Living/Mobility, Axial bradykinesia, Limb bradykinesia, Rigidity, Oculomotor, Cerebellar, Bulbar/Pseudo-bulbar, Mental, Orthostatic, Urinary, Limb dystonia, Axial dystonia, Pyramidal, Myoclonus and Tremor. All but the Pyramidal dimension demonstrated good internal consistency (Cronbach α ≥ 0.70). Inter-rater reliability was high for the total score (Intra-class coefficient = 0.94) and 9 dimensions (Intra-class coefficient = 0.80-0.93), and moderate (Intra-class coefficient = 0.54-0.77) for 6. Correlations of the total score with other clinical measures of severity were good (rho ≥ 0.70). The total score was significantly and linearly related to survival (p<0.0001). Responsiveness expressed as the Standardized Response Mean was high for the total score slope of change (SRM = 1.10), though higher in PSP (SRM = 1.25) than in MSA (SRM = 1.0), indicating a more rapid progression of PSP. The slope of change was constant with increasing disease severity demonstrating good linearity of the scale throughout disease stages. Although MSA and PSP differed quantitatively on the total score at entry and on rate of progression, the relative contribution of clinical dimensions to overall severity and progression was similar. CONCLUSIONS The NNIPPS-PPS has suitable validity, is reliable and sensitive, and therefore is appropriate for use in clinical studies with PSP or MSA. TRIAL REGISTRATION ClinicalTrials.gov NCT00211224

    Are mice good models for human neuromuscular disease? Comparing muscle excursions in walking between mice and humans

    Get PDF
    The mouse is one of the most widely used animal models to study neuromuscular diseases and test new therapeutic strategies. However, findings from successful pre-clinical studies using mouse models frequently fail to translate to humans due to various factors. Differences in muscle function between the two species could be crucial but often have been overlooked. The purpose of this study was to evaluate and compare muscle excursions in walking between mice and humans
    corecore