51 research outputs found

    Resequencing and comparative genomics of stagonospora nodorum: Sectional gene absence and effector discovery

    Get PDF
    Stagonospora nodorum is an important wheat (Triticum aestivum) pathogen in many parts of the world, causing major yield losses. It was the first species in the large fungal Dothideomycete class to be genome sequenced. The reference genome sequence (SN15) has been instrumental in the discovery of genes encoding necrotrophic effectors that induce disease symptoms in specific host genotypes. Here we present the genome sequence of two further S. nodorum strains (Sn4 and Sn79) that differ in their effector repertoire from the reference. Sn79 is avirulent on wheat and produces no apparent effectors when infiltrated onto many cultivars and mapping population parents. Sn4 is pathogenic on wheat and has virulences not found in SN15. The new strains, sequenced with short-read Illumina chemistry, are compared with SN15 by a combination of mapping and de novo assembly approaches.Each of the genomes contains a large number of strain-specific genes, many of which have no meaningful similarity to any known gene. Large contiguous sections of the reference genome are absent in the two newly sequenced strains. We refer to these differences as “sectional gene absences.” The presence of genes in pathogenic strains and absence in Sn79 is added to computationally predicted properties of known proteins to produce a list of likely effector candidates. Transposon insertion was observed in the mitochondrial genomes of virulent strains where the avirulent strain retained the likely ancestral sequence. The study suggests that short-read enabled comparative genomics is an effective way to both identify new S. nodorum effector candidates and to illuminate evolutionary processes in this species

    Taking some heat off the NDCs? The limited potential of additional short-lived climate forcers’ mitigation

    Get PDF
    Several studies have shown that the greenhouse gas reduction resulting from the current nationally determined contributions (NDCs) will not be enough to meet the overall targets of the Paris Climate Agreement. It has been suggested that more ambition mitigations of short-lived climate forcer (SLCF) emissions could potentially be a way to reduce the risk of overshooting the 1.5 or 2 °C target in a cost-effective way. In this study, we employ eight state-of-the-art integrated assessment models (IAMs) to examine the global temperature effects of ambitious reductions of methane, black and organic carbon, and hydrofluorocarbon emissions. The SLCFs measures considered are found to add significantly to the effect of the NDCs on short-term global mean temperature (GMT) (in the year 2040: − 0.03 to − 0.15 °C) and on reducing the short-term rate-of-change (by − 2 to 15%), but only a small effect on reducing the maximum temperature change before 2100. This, because later in the century under assumed ambitious climate policy, SLCF mitigation is maximized, either directly or indirectly due to changes in the energy system. All three SLCF groups can contribute to achieving GMT changes

    SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene

    Get PDF
    The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions

    Cost and attainability of meeting stringent climate targets without overshoot

    Get PDF
    Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change. The current scenarios, however, are criticized because they feature strategies with pronounced overshoot of the global temperature goal, requiring a long-term repair phase to draw temperatures down again through net-negative emissions. Some impacts might not be reversible. Hence, we explore a new set of net-zero CO2 emissions scenarios with limited overshoot. We show that upfront investments are needed in the near term for limiting temperature overshoot but that these would bring long-term economic gains. Our study further identifies alternative configurations of net-zero CO2 emissions systems and the roles of different sectors and regions for balancing sources and sinks. Even without net-negative emissions, CO2 removal is important for accelerating near-term reductions and for providing an anthropogenic sink that can offset the residual emissions in sectors that are hard to abate

    The role of methane in future climate strategies: mitigation potentials and climate impacts

    Get PDF
    This study examines model-specific assumptions and projections of methane (CH4) emissions in deep mitigation scenarios generated by integrated assessment models (IAMs). For this, scenarios of nine models are compared in terms of sectoral and regional CH4 emission reduction strategies, as well as resulting climate impacts. The models’ projected reduction potentials are compared to sector and technology-specific reduction potentials found in literature. Significant cost-effective and non-climate policy related reductions are projected in the reference case (10–36% compared to a “frozen emission factor” scenario in 2100). Still, compared to 2010, CH4 emissions are expected to rise steadily by 9–72% (up to 412 to 654 Mt CH4/year). Ambitious CO2 reduction measures could by themselves lead to a reduction of CH4 emissions due to a reduction of fossil fuels (22–48% compared to the reference case in 2100). However, direct CH4 mitigation is crucial and more effective in bringing down CH4 (50–74% compared to the reference case). Given the limited reduction potential, agriculture CH4 emissions are projected to constitute an increasingly larger share of total anthropogenic CH4 emissions in mitigation scenarios. Enteric fermentation in ruminants is in that respect by far the largest mitigation bottleneck later in the century with a projected 40–78% of total remaining CH4 emissions in 2100 in a strong (2 °C) climate policy case

    Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies

    Get PDF
    A rapid and deep decarbonization of power supply worldwide is required to limit global warming to well below 2 °C. Beyond greenhouse gas emissions, the power sector is also responsible for numerous other environmental impacts. Here we combine scenarios from integrated assessment models with a forward-looking life-cycle assessment to explore how alternative technology choices in power sector decarbonization pathways compare in terms of non-climate environmental impacts at the system level. While all decarbonization pathways yield major environmental co-benefits, we find that the scale of co-benefits as well as profiles of adverse side-effects depend strongly on technology choice. Mitigation scenarios focusing on wind and solar power are more effective in reducing human health impacts compared to those with low renewable energy, while inducing a more pronounced shift away from fossil and toward mineral resource depletion. Conversely, non-climate ecosystem damages are highly uncertain but tend to increase, chiefly due to land requirements for bioenergy

    Identifying energy model fingerprints in mitigation scenarios

    Get PDF
    Energy models are used to study emissions mitigation pathways, such as those compatible with the Paris Agreement goals. These models vary in structure, objectives, parameterization and level of detail, yielding differences in the computed energy and climate policy scenarios. To study model differences, diagnostic indicators are common practice in many academic fields, for example, in the physical climate sciences. However, they have not yet been applied systematically in mitigation literature, beyond addressing individual model dimensions. Here we address this gap by quantifying energy model typology along five dimensions: responsiveness, mitigation strategies, energy supply, energy demand and mitigation costs and effort, each expressed through several diagnostic indicators. The framework is applied to a diagnostic experiment with eight energy models in which we explore ten scenarios focusing on Europe. Comparing indicators to the ensemble yields comprehensive ‘energy model fingerprints’, which describe systematic model behaviour and contextualize model differences for future multi-model comparison studies
    corecore