16 research outputs found

    Adenosine A2A Receptors Modulate Acute Injury and Neuroinflammation in Brain Ischemia.

    Get PDF
    The extracellular concentration of adenosine in the brain increases dramatically during ischemia. Adenosine A2A receptor is expressed in neurons and glial cells and in inflammatory cells (lymphocytes and granulocytes). Recently, adenosine A2A receptor emerged as a potential therapeutic attractive target in ischemia. Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia the early massive increase of extracellular glutamate is followed by activation of resident immune cells, that is, microglia, and production or activation of inflammation mediators. Proinflammatory cytokines, which upregulate cell adhesion molecules, exert an important role in promoting recruitment of leukocytes that in turn promote expansion of the inflammatory response in ischemic tissue. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. A2A receptors present on central cells and on blood cells account for important effects depending on the time-related evolution of the pathological condition. Evidence suggests that A2A receptor antagonists provide early protection via centrally mediated control of excessive excitotoxicity, while A2A receptor agonists provide protracted protection by controlling massive blood cell infiltration in the hours and days after ischemia. Focus on inflammatory responses provides for adenosine A2A receptor agonists a wide therapeutic time-window of hours and even days after stroke

    Equilibrative Nucleoside Transporter ENT1 as a Biomarker of Huntington Disease

    Get PDF
    The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease

    The Adenosinergic Signaling: A Complex but Promising Therapeutic Target for Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is the most common neurodegenerative disorder in elderly people. AD is characterized by a progressive cognitive decline and it is neuropathologically defined by two hallmarks: extracellular deposits of aggregated β-amyloid (Aβ) peptides and intraneuronal fibrillar aggregates of hyper- and abnormally phosphorylated Tau proteins. AD results from multiple genetic and environmental risk factors. Epidemiological studies reported beneficial effects of caffeine, a non-selective adenosine receptors antagonist. In the present review, we discuss the impact of caffeine and of adenosinergic system modulation on AD, in terms of pathology and therapeutics

    Role of adenosine in oligodendrocyte precursor maturation

    Get PDF
    Differentiation and maturation of oligodendroglial cells are postnatal processes involving specific morphological changes correlated with the expression of stage-specific surface antigens and functional voltage-gated ion channels. A small fraction of oligodendrocyte progenitor cells (OPCs) generated during development are maintained in an immature and slowly proliferative or quiescent state in the adult central nervous system (CNS) representing an endogenous reservoir of immature cells. Adenosine receptors are expressed by OPCs and a key role of adenosine in oligodendrocyte maturation has been recently recognised. As evaluated on OPC cultures, adenosine by stimulating A1 receptors, promotes oligodendrocyte maturation and inhibits their proliferation; on the contrary by stimulating A2A receptors, it inhibits oligodendrocyte maturation. A1 and A2A receptor-mediated effects are related to opposite modifications of outward delayed rectifying membrane K+ currents (IK) that are involved in regulation of oligodendrocyte differentiation. Brain A1 and A2A receptors might represent new molecular targets for drugs useful in demyelinating pathologies, such as multiple sclerosis (MS), stroke and brain trauma

    A2A R‐induced transcriptional deregulation in astrocytes: An in vitro study

    No full text
    International audienceAdenosine A2A receptors (A2A R) are modulators of various physiological processes essential for brain homeostasis and fine synaptic tuning. In certain neurodegenerative conditions, notably Alzheimer's disease (AD), A2A Rs are pathologically upregulated in neurons but also in astrocytes. In that context, the use of A2A Rs inhibitors, normalizing impaired receptor function, is seen as a potential therapeutic strategy. However, the impact of A2A R alterations, particularly in astrocytes, is not fully understood. Here, we investigated the effect of A2A R overexpression on transcriptional deregulation in primary astrocytic cultures. By performing whole transcriptome analysis, we found that A2A R overexpression promotes robust transcriptional changes, mostly affecting immune response, angiogenesis, and cell activation-related genes. Importantly, we observed that treatment with SCH58261, a selective A2A R antagonist, restored the expression levels of several inflammatory and astrocytic activation-related genes, such as Interleukin-1beta and vimentin. This supports the notion that A2A R blockade could restore some astrocytic dysfunctions associated with abnormal A2A R expression, further arguing for a potential beneficial impact of receptor antagonists in A2A R-induced transcriptional deregulation, inflammation, and astrogliosis. Overall, our findings provide novel insights into the putative impact of A2A R overexpression on transcriptional deregulation in astrocytes, thereby opening novel avenues for the use of A2A R antagonists as potential therapeutic strategy in neurodegenerative diseases

    Equilibrative Nucleoside Transporter ENT1 as a Biomarker of Huntington Disease

    No full text
    The initial goal of this study was to investigate alterations in adenosine A2A receptor (A2AR) density or function in a rat model of Huntington disease (HD) with reported insensitivity to an A2AR antagonist. Unsuspected negative results led to the hypothesis of a low striatal adenosine tone and to the search for the mechanisms involved. Extracellular striatal concentrations of adenosine were measured with in vivo microdialysis in two rodent models of early neuropathological stages of HD disease, the Tg51 rat and the zQ175 knock-in mouse. In view of the crucial role of the equilibrative nucleoside transporter (ENT1) in determining extracellular content of adenosine, the binding properties of the ENT1 inhibitor [3H]-S-(4-Nitrobenzyl)-6-thioinosine were evaluated in zQ175 mice and the differential expression and differential coexpression patterns of the ENT1 gene (SLC29A1) were analyzed in a large human cohort of HD disease and controls. Extracellular striatal levels of adenosine were significantly lower in both animal models as compared with control littermates and striatal ENT1 binding sites were significantly upregulated in zQ175 mice. ENT1 transcript was significantly upregulated in HD disease patients at an early neuropathological severity stage, but not those with a higher severity stage, relative to non-demented controls. ENT1 transcript was differentially coexpressed (gained correlations) with several other genes in HD disease subjects compared to the control group. The present study demonstrates that ENT1 and adenosine constitute biomarkers of the initial stages of neurodegeneration in HD disease and also predicts that ENT1 could constitute a new therapeutic target to delay the progression of the disease

    Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease

    Get PDF
    International audienceConsumption of caffeine, a non-selective adenosine A2A receptor (A2AR) antagonist, reduces the risk of developing Alzheimer's disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A2AR antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A2AR antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aβ1-42 levels in the cortex of APP/PS1dE9 animals, while Aβ1-40 increased, thereby strongly affecting the Aβ1-42/Aβ1-40 ratio. Together, these data support the idea that A2AR blockade is of therapeutic value for AD

    Exacerbation of C1q dysregulation, synaptic loss and memory deficits in tau pathology linked to neuronal adenosine A2A receptor

    Get PDF
    International audienceAccumulating data support the role of tau pathology in cognitive decline in ageing and Alzheimer's disease, but underlying mechanisms remain ill-defined. Interestingly, ageing and Alzheimer's disease have been associated with an abnormal upregulation of adenosine A2A receptor (A2AR), a fine tuner of synaptic plasticity. However, the link between A2AR signalling and tau pathology has remained largely unexplored. In the present study, we report for the first time a significant upregulation of A2AR in patients suffering from frontotemporal lobar degeneration with the MAPT P301L mutation. To model these alterations, we induced neuronal A2AR upregulation in a tauopathy mouse model (THY-Tau22) using a new conditional strain allowing forebrain overexpression of the receptor. We found that neuronal A2AR upregulation increases tau hyperphosphorylation, potentiating the onset of tau-induced memory deficits. This detrimental effect was linked to a singular microglial signature as revealed by RNA sequencing analysis. In particular, we found that A2AR overexpression in THY-Tau22 mice led to the hippocampal upregulation of C1q complement protein-also observed in patients with frontotemporal lobar degeneration-and correlated with the loss of glutamatergic synapses, likely underlying the observed memory deficits. These data reveal a key impact of overactive neuronal A2AR in the onset of synaptic loss in tauopathies, paving the way for new therapeutic approaches

    Table_2_Beneficial Effect of a Selective Adenosine A2A Receptor Antagonist in the APPswe/PS1dE9 Mouse Model of Alzheimer’s Disease.XLSX

    No full text
    <p>Consumption of caffeine, a non-selective adenosine A<sub>2A</sub> receptor (A<sub>2A</sub>R) antagonist, reduces the risk of developing Alzheimer’s disease (AD) and mitigates both amyloid and Tau lesions in transgenic mouse models of the disease. While short-term treatment with A<sub>2A</sub>R antagonists have been shown to alleviate cognitive deficits in mouse models of amyloidogenesis, impact of a chronic and long-term treatment on the development of amyloid burden, associated neuroinflammation and memory deficits has never been assessed. In the present study, we have evaluated the effect of a 6-month treatment of APPsw/PS1dE9 mice with the potent and selective A<sub>2A</sub>R antagonist MSX-3 from 3 to 9-10 months of age. At completion of the treatment, we found that the MSX-3 treatment prevented the development of memory deficits in APP/PS1dE9 mice, without significantly altering hippocampal and cortical gene expressions. Interestingly, MSX-3 treatment led to a significant decrease of Aβ1-42 levels in the cortex of APP/PS1dE9 animals, while Aβ1-40 increased, thereby strongly affecting the Aβ1-42/Aβ1-40 ratio. Together, these data support the idea that A<sub>2A</sub>R blockade is of therapeutic value for AD.</p
    corecore