281 research outputs found

    TEAD and YAP regulate the enhancer network of human embryonic pancreatic progenitors.

    Get PDF
    The genomic regulatory programmes that underlie human organogenesis are poorly understood. Pancreas development, in particular, has pivotal implications for pancreatic regeneration, cancer and diabetes. We have now characterized the regulatory landscape of embryonic multipotent progenitor cells that give rise to all pancreatic epithelial lineages. Using human embryonic pancreas and embryonic-stem-cell-derived progenitors we identify stage-specific transcripts and associated enhancers, many of which are co-occupied by transcription factors that are essential for pancreas development. We further show that TEAD1, a Hippo signalling effector, is an integral component of the transcription factor combinatorial code of pancreatic progenitor enhancers. TEAD and its coactivator YAP activate key pancreatic signalling mediators and transcription factors, and regulate the expansion of pancreatic progenitors. This work therefore uncovers a central role for TEAD and YAP as signal-responsive regulators of multipotent pancreatic progenitors, and provides a resource for the study of embryonic development of the human pancreas

    Complex exon-intron marking by histone modifications is not determined solely by nucleosome distribution

    Get PDF
    It has recently been shown that nucleosome distribution, histone modifications and RNA polymerase II (Pol II) occupancy show preferential association with exons (“exon-intron marking”), linking chromatin structure and function to co-transcriptional splicing in a variety of eukaryotes. Previous ChIP-sequencing studies suggested that these marking patterns reflect the nucleosomal landscape. By analyzing ChIP-chip datasets across the human genome in three cell types, we have found that this marking system is far more complex than previously observed. We show here that a range of histone modifications and Pol II are preferentially associated with exons. However, there is noticeable cell-type specificity in the degree of exon marking by histone modifications and, surprisingly, this is also reflected in some histone modifications patterns showing biases towards introns. Exon-intron marking is laid down in the absence of transcription on silent genes, with some marking biases changing or becoming reversed for genes expressed at different levels. Furthermore, the relationship of this marking system with splicing is not simple, with only some histone modifications reflecting exon usage/inclusion, while others mirror patterns of exon exclusion. By examining nucleosomal distributions in all three cell types, we demonstrate that these histone modification patterns cannot solely be accounted for by differences in nucleosome levels between exons and introns. In addition, because of inherent differences between ChIP-chip array and ChIP-sequencing approaches, these platforms report different nucleosome distribution patterns across the human genome. Our findings confound existing views and point to active cellular mechanisms which dynamically regulate histone modification levels and account for exon-intron marking. We believe that these histone modification patterns provide links between chromatin accessibility, Pol II movement and co-transcriptional splicing

    Imbalance of neurotrophin receptor isoforms TrkB-FL/TrkB-T1 induces neuronal death in excitotoxicity

    Get PDF
    A better understanding of the mechanisms underlying neuronal death in cerebral ischemia is required for the development of stroke therapies. Here we analyze the contribution of the tropomyosin-related kinase B (TrkB) neurotrophin receptor to excitotoxicity, a primary pathological mechanism in ischemia, which is induced by overstimulation of glutamate receptors of the N-methyl-D-aspartate type. We demonstrate a significant modification of TrkB expression that is strongly associated with neurodegeneration in models of ischemia and in vitro excitotoxicity. Two mechanisms cooperate for TrkB dysregulation: (1) calpain-processing of full-length TrkB (TrkB-FL), high-affinity receptor for brain-derived neurotrophic factor, which produces a truncated protein lacking the tyrosine-kinase domain and strikingly similar to the inactive TrkB-T1 isoform and (2) reverse regulation of the mRNA of these isoforms. Collectively, excitotoxicity results in a decrease of TrkB-FL, the production of truncated TrkB-FL and the upregulation of TrkB-T1. A similar neuro-specific increase of the TrkB-T1 isoform is also observed in stroke patients. A lentivirus designed for both neuro-specific TrkB-T1 interference and increased TrkB-FL expression allows recovery of the TrkB-FL/TrkB-T1 balance and protects neurons from excitotoxic death. These data implicate a combination of TrkB-FL downregulation and TrkB-T1 upregulation as significant causes of neuronal death in excitotoxicity, and reveal novel targets for the design of stroke therapies

    Tiling Histone H3 Lysine 4 and 27 Methylation in Zebrafish Using High-Density Microarrays

    Get PDF
    BACKGROUND: Uncovering epigenetic states by chromatin immunoprecipitation and microarray hybridization (ChIP-chip) has significantly contributed to the understanding of gene regulation at the genome-scale level. Many studies have been carried out in mice and humans; however limited high-resolution information exists to date for non-mammalian vertebrate species. PRINCIPAL FINDINGS: We report a 2.1-million feature high-resolution Nimblegen tiling microarray for ChIP-chip interrogations of epigenetic states in zebrafish (Danio rerio). The array covers 251 megabases of the genome at 92 base-pair resolution. It includes ∼15 kb of upstream regulatory sequences encompassing all RefSeq promoters, and over 5 kb in the 5' end of coding regions. We identify with high reproducibility, in a fibroblast cell line, promoters enriched in H3K4me3, H3K27me3 or co-enriched in both modifications. ChIP-qPCR and sequential ChIP experiments validate the ChIP-chip data and support the co-enrichment of trimethylated H3K4 and H3K27 on a subset of genes. H3K4me3- and/or H3K27me3-enriched genes are associated with distinct transcriptional status and are linked to distinct functional categories. CONCLUSIONS: We have designed and validated for the scientific community a comprehensive high-resolution tiling microarray for investigations of epigenetic states in zebrafish, a widely used developmental and disease model organism

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation

    The spliceosome U2 snRNP factors promote genome stability through distinct mechanisms; transcription of repair factors and R-loop processing

    Get PDF
    Recent whole-exome sequencing of malignancies have detected recurrent somatic mutations in U2 small nuclear ribonucleoprotein complex (snRNP) components of the spliceosome. These factors have also been identified as novel players in the DNA-damage response (DDR) in several genome-wide screens and proteomic analysis. Although accumulating evidence implies that the spliceosome has an important role in genome stability and is an emerging hallmark of cancer, its precise role in DNA repair still remains elusive. Here we identify two distinct mechanisms of how spliceosome U2 snRNP factors contribute to genome stability. We show that the spliceosome maintains protein levels of essential repair factors, thus contributing to homologous recombination repair. In addition, real-time laser microirradiation analysis identified rapid recruitment of the U2 snRNP factor SNRPA1 to DNA-damage sites. Functional analysis of SNRPA1 revealed a more immediate and direct role in preventing R-loop-induced DNA damage. Our present study implies a complex interrelation between transcription, mRNA splicing and the DDR. Cells require rapid spatio-temporal coordination of these chromatin transactions to cope with various forms of genotoxic stress

    Chromatin structure characteristics of pre-miRNA genomic sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are non-coding RNAs with important roles in regulating gene expression. Recent studies indicate that transcription and cleavage of miRNA are coupled, and that chromatin structure may influence miRNA transcription. However, little is known about the relationship between the chromatin structure and cleavage of pre-miRNA from pri-miRNA.</p> <p>Results</p> <p>By analysis of genome-wide nucleosome positioning data sets from human and <it>Caenorhabditis elegans </it>(<it>C. elegans</it>), we found an enrichment of positioned nucleosome on pre-miRNA genomic sequences, which is highly correlated with GC content within pre-miRNA. In addition, obvious enrichments of three histone modifications (H2BK5me1, H3K36me3 and H4K20me1) as well as RNA Polymerase II (RNAPII) were observed on pre-miRNA genomic sequences corresponding to the active-promoter miRNAs and expressed miRNAs.</p> <p>Conclusion</p> <p>Our results revealed the chromatin structure characteristics of pre-miRNA genomic sequences, and implied potential mechanisms that can recognize these characteristics, thus improving pre-miRNA cleavage.</p
    corecore