8 research outputs found

    Compartmentalized supramolecular hydrogels based on viral nanocages towards sophisticated cargo administration

    No full text
    Introduction of compartments with defined spaces inside a hydrogel network brings unique features, such as cargo quantification, stabilization and diminishment of burst release, which are all desired for biomedical applications. As a proof of concept, guest-modified cowpea chlorotic mottle virus (CCMV) particles and complementary guest-modified hydroxylpropyl cellulose (HPC) were non-covalently cross-linked through the formation of ternary host-guest complexes with cucurbit[8]uril (CB[8]). Furthermore, CCMV based virus-like particles (VLPs) loaded with tetrasulfonated zinc phthalocyanine (ZnPc) were prepared, with a loading efficiency up to 99%, which are subsequently successfully integrated inside the supramolecular hydrogel network. It was shown that compartments provided by protein cages not only help to quantify the loaded ZnPc cargo, but also improve the water solubility of ZnPc to avoid undesired aggregation. Moreover, the VLPs together with ZnPc cargo can be released in a controlled way without an initial burst release. The photodynamic effect of ZnPc molecules was retained after encapsulation of capsid protein and release from the hydrogel. This line of research suggests a new approach for sophisticated drug administration in supramolecular hydrogels

    Dual Functionalization of Rod-Shaped Viruses on Single Coat Protein Subunits

    No full text
    Plant viruses are emerging as versatile tools for nanotechnology applications since it is possible to modify their multivalent protein surfaces and thereby introduce and display new functionalities. In this chapter, we describe a tobacco mosaic virus (TMV) variant that exposes two selectively addressable amino acid moieties on each of its 2130 coat protein (CP) subunits. A lysine as well as a cysteine introduced at accessible sites of every CP can be modified with amino- and/or thiol-reactive chemistry such as N-hydroxysuccinimide esters (NHS ester) and maleimide containing reagents alone or simultaneously. This enables the pairwise immobilization of distinct molecules in close vicinity to each other on the TMV surface by simple standard conjugation protocols. We describe the generation of the mutations, the virus propagation and isolation as well as the dual functionalization of the TMV variant with two fluorescent dyes. The labeling is evaluated by SDS-PAGE and spectrophotometry and the degree of labeling (DOL) calculated

    Bioactuators based on stimulus-responsive hydrogels and their emerging biomedical applications

    No full text
    corecore