254 research outputs found

    Production and Characterization of Graphene Oxide Surfaces against Uropathogens

    Get PDF
    Graphene and its functionalized derivatives have been increasingly applied in the biomedi-cal field, particularly in the production of antimicrobial and anti-adhesive surfaces. This study aimed to evaluate the performance of graphene oxide (GO)/polydimethylsiloxane (PDMS) composites against Staphylococcus aureus and Pseudomonas aeruginosa biofilms. GO/PDMS composites containing different GO loadings (1, 3, and 5 wt.%) were synthesized and characterized regarding their morphol-ogy, roughness, and hydrophobicity, and tested for their ability to inhibit biofilm formation under conditions that mimic urinary tract environments. Biofilm formation was assessed by determining the number of total and culturable cells. Additionally, the antibacterial mechanisms of action of GO were investigated for the tested uropathogens. Results indicated that the surfaces containing GO had greater roughness and increased hydrophobicity than PDMS. Biofilm analysis showed that the 1 wt.% GO/PDMS composite was the most effective in reducing S. aureus biofilm formation. In oppo-sition, P. aeruginosa biofilms were not inhibited by any of the synthesized composites. Furthermore, 1% (w/v) GO increased the membrane permeability, metabolic activity, and endogenous reactive oxygen species (ROS) synthesis in S. aureus. Altogether, these results suggest that GO/PDMS com-posites are promising materials for application in urinary catheters, although further investigation is required

    Monte Carlo Simulation of Bony Heterogeneity Effects on Dose Profile for Small Irradiation Field in Radiotherapy

    Get PDF
    In the radiotherapy treatment planning of a lesion located in the head region with small field radiation beams, the heterogeneity corrections play an important role. In this work, we investigated the influence of a bony heterogeneity on dose profile inside a soft tissue phantom containing a bony material. PDD curves were obtained by simulation using the Monte Carlo code EGSnrc and employing Eclipse® treatment planning system algorithms (Batho, Modified Batho, Equivalent TAR and Anisotropic Analytic Algorithm) for a 15 MV photon beam and field sizes of 2×2 and 10×10 cm2. The Equivalent TAR method exhibited better agreement with Monte Carlo simulations for the 2×2 cm2 field size. The magnitude of the effect on PDD due to the bony heterogeneity for 1×1, 2×2 and 10×10 cm2 field sizes increases to 10, 5 and 3%, respectively

    Measurements of CFTR-Mediated Cl- Secretion in Human Rectal Biopsies Constitute a Robust Biomarker for Cystic Fibrosis Diagnosis and Prognosis

    Get PDF
    BACKGROUND: Cystic Fibrosis (CF) is caused by ∼1,900 mutations in the CF transmembrane conductance regulator (CFTR) gene encoding for a cAMP-regulated chloride (Cl(-)) channel expressed in several epithelia. Clinical features are dominated by respiratory symptoms, but there is variable organ involvement thus causing diagnostic dilemmas, especially for non-classic cases. METHODOLOGY/PRINCIPAL FINDINGS: To further establish measurement of CFTR function as a sensitive and robust biomarker for diagnosis and prognosis of CF, we herein assessed cholinergic and cAMP-CFTR-mediated Cl(-) secretion in 524 freshly excised rectal biopsies from 118 individuals, including patients with confirmed CF clinical diagnosis (n=51), individuals with clinical CF suspicion (n=49) and age-matched non-CF controls (n=18). Conclusive measurements were obtained for 96% of cases. Patients with "Classic CF", presenting earlier onset of symptoms, pancreatic insufficiency, severe lung disease and low Shwachman-Kulczycki scores were found to lack CFTR-mediated Cl(-) secretion (<5%). Individuals with milder CF disease presented residual CFTR-mediated Cl(-) secretion (10-57%) and non-CF controls show CFTR-mediated Cl(-) secretion ≥ 30-35% and data evidenced good correlations with various clinical parameters. Finally, comparison of these values with those in "CF suspicion" individuals allowed to confirm CF in 16/49 individuals (33%) and exclude it in 28/49 (57%). Statistical discriminant analyses showed that colonic measurements of CFTR-mediated Cl(-) secretion are the best discriminator among Classic/Non-Classic CF and non-CF groups. CONCLUSIONS/SIGNIFICANCE: Determination of CFTR-mediated Cl(-) secretion in rectal biopsies is demonstrated here to be a sensitive, reproducible and robust predictive biomarker for the diagnosis and prognosis of CF. The method also has very high potential for (pre-)clinical trials of CFTR-modulator therapies.This work was supported by grants TargetScreen2 (EU/FP6/LSH/2005/037365), PIC/IC/83103/2007; PTDC/MAT/118335/2010; PEstOE/BIA/UI4046/2011 (to BioFIG) and PEstOE/MAT/UI0006/2011 (to CEAUL) from FCT (Portugal); and FAPESP (SPRF, Brazil), CNPq (40.8924/2006/3, Brazil) and Mukoviszidose e.V. S02/10 (Germany). MS and IU are recipients of SFRH/BD/35936/2007 and SFRH/BD/69180/2010 PhD fellowships (FCT, Portugal), respectively. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Schistosoma mansoni Stomatin Like Protein-2 Is Located in the Tegument and Induces Partial Protection against Challenge Infection

    Get PDF
    Schistosomiasis is a parasitic disease causing serious chronic morbidity in tropical countries. Together with the publication of the transcriptome database, a series of new vaccine candidates were proposed based on their functional classification. However, the prediction of vaccine candidates from sequence information or even by proteomics or microarrays data is somewhat speculative and there remains the considerable task of functional analysis of each new gene/protein. In this study, we present the characterization of one of these molecules, a stomatin like protein 2 (SmStoLP-2). Sequence analysis predicts signals that could contribute to protein membrane association and mitochondrial targeting, which was confirmed by differential extractions of schistosome tegument membranes and mitochondria. Additionally, confocal microscope analysis showed SmStoLP-2 present in the tegument of 7-day-old schistosomula and adult worms. Studies in patients living in endemic areas for schistosomiasis revealed high levels of IgG1, IgG2, IgG3 and IgA anti-SmStoLP-2 antibodies in individuals resistant to reinfection. Recombinant SmStoLP-2 protein, when used as vaccine, induced significant levels of protection in mice. This reduction in worm burden was associated with a typical Th1-type immune response. These results indicate that SmStoLP-2 could be useful in association with other antigens for the composition of a vaccine against schistosomiasis

    DNA Barcoding Bromeliaceae: Achievements and Pitfalls

    Get PDF
    <div><h3>Background</h3><p>DNA barcoding has been successfully established in animals as a tool for organismal identification and taxonomic clarification. Slower nucleotide substitution rates in plant genomes have made the selection of a DNA barcode for land plants a much more difficult task. The Plant Working Group of the Consortium for the Barcode of Life (CBOL) recommended the two-marker combination <em>rbcL</em>/<em>matK</em> as a pragmatic solution to a complex trade-off between universality, sequence quality, discrimination, and cost.</p> <h3>Methodology/Principal Findings</h3><p>It is expected that a system based on any one, or a small number of plastid genes will fail within certain taxonomic groups with low amounts of plastid variation, while performing well in others. We tested the effectiveness of the proposed CBOL Plant Working Group barcoding <em>markers</em> for land plants in identifying 46 bromeliad species, a group rich in endemic species from the endangered Brazilian Atlantic Rainforest. Although we obtained high quality sequences with the suggested primers, species discrimination in our data set was only 43.48%. Addition of a third marker, <em>trnH–psbA</em>, did not show significant improvement. This species identification failure in Bromeliaceaecould also be seen in the analysis of the GenBank's <em>matK</em> data set. Bromeliaceae's sequence divergence was almost three times lower than the observed for Asteraceae and Orchidaceae. This low variation rate also resulted in poorly resolved tree topologies. Among the three Bromeliaceae subfamilies sampled, Tillandsioideae was the only one recovered as a monophyletic group with high bootstrap value (98.6%). Species paraphyly was a common feature in our sampling.</p> <h3>Conclusions/Significance</h3><p>Our results show that although DNA barcoding is an important tool for biodiversity assessment, it tends to fail in taxonomy complicated and recently diverged plant groups, such as Bromeliaceae. Additional research might be needed to develop markers capable to discriminate species in these complex botanical groups.</p> </div
    corecore