85 research outputs found

    Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition

    Get PDF
    Abstract The recent emergence of bacterial pathogens resistant to most or all available antibiotics is among the major global public health problems. As indirect transmission through contaminated surfaces is a main route of dissemination for most of such pathogens, the implementation of effective antimicrobial surfaces has been advocated as a promising approach for their containment, especially in the hospital settings. However, traditional wet synthesis methods of nanoparticle-based antimicrobial materials leave a number of key points open for metal surfaces: such as adhesion to the surface and nanoparticle coalescence. Here we demonstrate an alternative route, i.e. supersonic cluster beam deposition, to obtain antimicrobial Ag nanoparticle films deposited directly on surfaces. The synthesized films are simple to produce with controlled density and thickness, are stable over time, and are shown to be highly bactericidal against major Gram positive and Gram negative bacterial pathogens, including extensively drug-resistant strains. From the Clinical Editor The use of silver nanoparticle in health care is getting more widespread. The authors here describe the technique of cluster beam deposition for spraying silver on surfaces used in health care sectors. This may open a new avenue for future anti-bacterial coatings

    Antimicrobial susceptibility and emerging resistance determinants (blaCTX-M, rmtB, fosA3) in clinical isolates from urinary tract infections in the Bolivian Chaco

    Get PDF
    Summary Background Bolivia is among the lowest-resourced South American countries, with very few data available on antibiotic resistance in bacterial pathogens. The phenotypic and molecular characterization of bacterial isolates responsible for urinary tract infections (UTIs) in the Bolivian Chaco are reported here. Methods All clinical isolates from UTIs collected in the Hospital Basico Villa Montes between June 2010 and January 2014 were analyzed ( N =213). Characterization included susceptibility testing, extended-spectrum beta-lactamase (ESBL) detection, identification of relevant resistance determinants (e.g., CTX-M-type ESBLs, 16S rRNA methyltransferases, glutathione S-transferases), and genotyping of CTX-M producers. Results Very high resistance rates were observed. Overall, the lowest susceptibility was observed for trimethoprim–sulphamethoxazole, tetracycline, nalidixic acid, amoxicillin–clavulanic acid, ciprofloxacin, and gentamicin. Of E. coli and K. pneumoniae , 11.6% were ESBL producers. Resistance to nitrofurantoin, amikacin, and fosfomycin remained low, and susceptibility to carbapenems was fully preserved. CTX-M-15 was the dominant CTX-M variant. Four E. coli ST131 (two being H30-Rx) were identified. Of note, isolates harbouring rmtB and fosA3 were detected. Conclusions Bolivia is not an exception to the very high resistance burden affecting many South American countries. Optimization of alternative approaches to monitor local antibiotic resistance trends in resource-limited settings is strongly encouraged to support the implementation of effective empiric treatment guidelines

    In vitro time-kill kinetics of dalbavancin against Staphylococcus spp. biofilms over prolonged exposure times

    Get PDF
    Abstract Staphylococcus aureus and Staphylococcus epidermidis are leading pathogens of biofilm-related infections and represent the most common cause of osteomyelitis and biomedical implants infections. Biofilm-related infections usually require long-term antibiotic treatment, often associated to surgical interventions. Dalbavancin is a newer lipoglycopeptide approved for the treatment of acute skin and skin-structure infections caused by Gram-positive pathogens. In addition, dalbavancin has recently been considered as a potential option for the treatment of staphylococcal osteomyelitis and orthopedic implant infections. In this study, time-kill kinetics of dalbavancin against S. aureus and S. epidermidis biofilms were determined over prolonged exposure times (up to 7 days), using both a standardized biofilm susceptibility model and biofilms grown onto relevant orthopedic biomaterials (i.e. titanium and cobalt-chrome disks). Dalbavancin (at concentrations achievable in bone and articular tissue) showed a potent activity against established staphylococcal biofilms in both tested models, and was overall superior to the comparator vancomycin

    Methicillin-resistant Staphylococcus aureus in hospitalized patients from the Bolivian Chaco

    Get PDF
    Summary Objectives Information is lacking on the methicillin-resistant Staphylococcus aureus (MRSA) clonal lineages circulating in Bolivia. We investigated the prevalence and molecular epidemiology of S. aureus colonization in hospitalized patients from the Bolivian Chaco, and compared their features with those of the few clinical isolates available from that setting. Methods S. aureus nasal/inguinal colonization was investigated in 280 inpatients from eight hospitals in two point prevalence surveys (2012, n =90; 2013, n =190). Molecular characterization included genotyping ( spa typing, multilocus sequence typing, and pulsed-field gel electrophoresis), detection of virulence genes, and SCC mec typing. Results Forty-one inpatients (14.6%) were S. aureus nasal/inguinal carriers, of whom five were colonized by MRSA (1.8%). MRSA isolates mostly belonged to spa- type t701, harboured SCC mec IVc, and were negative for Panton–Valentine leukocidin (PVL) genes. However, a USA300-related isolate was also detected, which showed the characteristics of the USA300 Latin American variant (USA300-LV; i.e., ST8, spa- type t008, SCC mec IVc, presence of PVL genes, absence of arc A). Notably, all the available MRSA clinical isolates ( n =5, collected during 2011–2013) were also identified as USA300-LV. Conclusions Overall, MRSA colonization in inpatients from the Bolivian Chaco was low. However, USA300-LV-related isolates were detected in colonization and infections, emphasizing the importance of implementing control measures to limit their further dissemination in this resource-limited area

    Low prevalence of methicillin-resistant Staphylococcus aureus nasal carriage in urban and rural community settings in Bolivia and Peru☆

    Get PDF
    Summary Objective To investigate the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) nasal carriage in rural and urban community settings of Bolivia and Peru. Methods MRSA nasal carriage was investigated in 585 individuals living in rural and urban areas of Bolivia and Peru (one urban area, one small rural village, and two native communities, one of which was highly isolated). MRSA isolates were subjected to molecular analysis for the detection of virulence genes, characterization of the staphylococcal cassette chromosome mec (SCC mec ), and genotyping (multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE)). Results An overall very low prevalence of MRSA nasal carriage was observed (0.5%), with MRSA carriers being detected only in a small rural village of the Bolivian Chaco. The three MRSA isolates showed the characteristics of community-associated MRSA (being susceptible to all non-beta-lactam antibiotics and harboring the SCC mec type IV), were clonally related, and belonged to ST1649. Conclusions This study provides an insight into the epidemiology of MRSA in community settings of Bolivia and Peru. Reliable, time-saving, and low-cost methods should be implemented to encourage continued surveillance of MRSA dissemination in resource-limited countries

    In Vitro Synergism of Colistin and N-acetylcysteine against Stenotrophomonas maltophilia

    Get PDF
    Stenotrophomonas maltophilia is an emerging global opportunistic pathogen, responsible for a wide range of human infections, including respiratory tract infections. Intrinsic multidrug resistance and propensity to form biofilms make S. maltophilia infections recalcitrant to treatment. Colistin is among the second-line options in case of difficult-to-treat S. maltophilia infections, with the advantage of being also administrable by nebulization. We investigated the potential synergism of colistin in combination with N-acetylcysteine (NAC) (a mucolytic agent with antioxidant and anti-inflammatory properties) against S. maltophilia grown in planktonic phase and biofilm. Eighteen S. maltophilia clinical isolates (comprising three isolates from cystic fibrosis (CF) and two trimethoprim-sulfamethoxazole (SXT)-resistant strains) were included. Checkerboard assays showed a synergism of colistin/NAC combinations against the strains with colistin Minimum Inhibitory Concentration (MIC) >2 µg/mL (n = 13), suggesting that NAC could antagonize the mechanisms involved in colistin resistance. Nonetheless, time-kill assays revealed that NAC might potentiate colistin activity also in case of lower colistin MICs. A dose-dependent potentiation of colistin activity by NAC was also clearly observed against S. maltophilia biofilms, also at sub-MIC concentrations. Colistin/NAC combinations, at concentrations likely achievable by topical administration, might represent a valid option for the treatment of S. maltophilia respiratory infections and should be examined further
    • …
    corecore