3,857 research outputs found
Thermal stress response of General Purpose Heat Source (GPHS) aeroshell material
A thermal stress test was conducted to determine the ability of the GPHS aeroshell 3 D FWPF material to maintain physical integrity when exposed to a severe heat flux such as would occur from prompt reentry of GPHS modules. The test was performed in the Giant Planetary Facility at NASA's Ames Research Center. Good agreement was obtained between the theoretical and experimental results for both temperature and strain time histories. No physical damage was observed in the test specimen. These results provide initial corroboration both of the analysis techniques and that the GPHS reentry member will survive the reentry thermal stress levels expected
Microminiaturized, biopotential conditioning system (MBCS)
Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material
The quick and the dead: when reaction beats intention
Everyday behaviour involves a trade-off between planned actions and reaction to environmental events.Evidence from neurophysiology, neurology and functional brain imaging suggests different neural bases for the control of different movement types. Here we develop a behavioural paradigm to test movement dynamics for intentional versus reaction movements and provide evidence for a ‘reactive advantage’ in movement execution, whereby the same action is executed faster in reaction to an opponent. We placed pairs of participants in competition with each other to make a series of button presses. Within subject analysis of movement times revealed a 10 per cent benefit for reactive actions. This was maintained when opponents performed dissimilar actions, and when participants competed against a computer, suggesting that the effect is not related to facilitation produced by action observation. Rather, faster ballistic movements may be a general property of reactive motor control, potentially providing a useful means of promoting survival
Spectral and temporal cues for perception of material and action categories in impacted sound sources
On quantum coding for ensembles of mixed states
We consider the problem of optimal asymptotically faithful compression for
ensembles of mixed quantum states. Although the optimal rate is unknown, we
prove upper and lower bounds and describe a series of illustrative examples of
compression of mixed states. We also discuss a classical analogue of the
problem.Comment: 23 pages, LaTe
Rational bidding using reinforcement learning: an application in automated resource allocation
The application of autonomous agents by the provisioning and usage of computational resources is an attractive research field. Various methods and technologies in the area of artificial intelligence, statistics and economics are playing together to achieve i) autonomic resource provisioning and usage of computational resources, to invent ii) competitive bidding strategies for widely used market mechanisms and to iii) incentivize consumers and providers to use such market-based systems.
The contributions of the paper are threefold. First, we present a framework for supporting consumers and providers in technical and economic preference elicitation and the generation of bids. Secondly, we introduce a consumer-side reinforcement learning bidding strategy which enables rational behavior by the generation and selection of bids. Thirdly, we evaluate and compare this bidding strategy against a truth-telling bidding strategy for two kinds of market mechanisms – one centralized and one decentralized
Clustering and the hyperbolic geometry of complex networks
Clustering is a fundamental property of complex networks and it is the
mathematical expression of a ubiquitous phenomenon that arises in various types
of self-organized networks such as biological networks, computer networks or
social networks. In this paper, we consider what is called the global
clustering coefficient of random graphs on the hyperbolic plane. This model of
random graphs was proposed recently by Krioukov et al. as a mathematical model
of complex networks, under the fundamental assumption that hyperbolic geometry
underlies the structure of these networks. We give a rigorous analysis of
clustering and characterize the global clustering coefficient in terms of the
parameters of the model. We show how the global clustering coefficient can be
tuned by these parameters and we give an explicit formula for this function.Comment: 51 pages, 1 figur
Response theory for time-resolved second-harmonic generation and two-photon photoemission
A unified response theory for the time-resolved nonlinear light generation
and two-photon photoemission (2PPE) from metal surfaces is presented. The
theory allows to describe the dependence of the nonlinear optical response and
the photoelectron yield, respectively, on the time dependence of the exciting
light field. Quantum-mechanical interference effects affect the results
significantly. Contributions to 2PPE due to the optical nonlinearity of the
surface region are derived and shown to be relevant close to a plasmon
resonance. The interplay between pulse shape, relaxation times of excited
electrons, and band structure is analyzed directly in the time domain. While
our theory works for arbitrary pulse shapes, we mainly focus on the case of two
pulses of the same mean frequency. Difficulties in extracting relaxation rates
from pump-probe experiments are discussed, for example due to the effect of
detuning of intermediate states on the interference. The theory also allows to
determine the range of validity of the optical Bloch equations and of
semiclassical rate equations, respectively. Finally, we discuss how collective
plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe
On ordinal utility, cardinal utility, and random utility
Though the Random Utility Model (RUM) was conceived
entirely in terms of ordinal utility, the apparatus throughwhich it is widely practised exhibits properties of
cardinal utility. The adoption of cardinal utility as a
working operation of ordinal is perfectly valid, provided
interpretations drawn from that operation remain faithful
to ordinal utility. The paper considers whether the latterrequirement holds true for several measurements commonly
derived from RUM. In particular it is found that
measurements of consumer surplus change may depart from
ordinal utility, and exploit the cardinality inherent in
the practical apparatus.
Singularites in the Bousseneq equation and in the generalized KdV equation
In this paper, two kinds of the exact singular solutions are obtained by the
improved homogeneous balance (HB) method and a nonlinear transformation. The
two exact solutions show that special singular wave patterns exists in the
classical model of some nonlinear wave problems
- …
