3,016 research outputs found

    Evaluating a model of global psychophysical judgments for brightness: II. Behavioral properties linking summations and productions

    Get PDF
    Steingrimsson (Attention, Perception, & Psychophysics, 71, 1916–1930, 2009) outlined Luce’s (Psychological Review, 109, 520–532 2002, 111, 446–454 2004) proposed psychophysical theory and tested, for brightness, behavioral properties that, separately, gave rise to two psychophysical functions, Ψ⊕ and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p {\Psi_{{ \circ_p}}} \end{document}. The function Ψ⊕ maps pairs of physical intensities onto positive real numbers and represents subjective summation, and the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p {\Psi_{{ \circ_p}}} \end{document} represents a form of ratio production. This article, the second in a series expected to consist of three articles, tests the properties linking summation and production such that it forces \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}Ψ∘p=Ψ⊕=Ψ {\Psi_{{ \circ_p}}} = {\Psi_\oplus } = \Psi \end{document}. The properties tested are a form of distributivity and, in three experiments, were subjected to an empirical evaluation. Considerable support is provided for the existence of a single function Ψ for both summation and ratio production. The scope of this series of articles is to establish the theory as a descriptive model of binocular brightness perception

    Microminiaturized, biopotential conditioning system (MBCS)

    Get PDF
    Multichannel, medical monitoring system allows almost complete freedom of movement for subject during monitoring periods. System comprises monitoring unit (biobelt), transmission line, and data acquisition unit. Belt, made of polybenzimidizole fabric, is wrapped around individual's waist and held in place by overlapping sections of Velcro closure material

    Flowers and Spiders in Spatial Stimulus-Response Compatibility: Does Affective Valence Influence Selection of Task-Sets or Selection of Responses?

    Get PDF
    The present study examined the effect of stimulus valence on two levels of selection in the cognitive system, selection of a task-set and selection of a response. In the first experiment, participants performed a spatial compatibility task (pressing left and right keys according to the locations of stimuli) in which stimulus-response mappings were determined by stimulus valence. There was a standard spatial stimulus-response compatibility (SRC) effect for positive stimuli (flowers) and a reversed SRC effect for negative stimuli (spiders), but the same data could be interpreted as showing faster responses when positive and negative stimuli were assigned to compatible and incompatible mappings, respectively, than when the assignment was opposite. Experiment 2 disentangled these interpretations, showing that valence did not influence a spatial SRC effect (Simon effect) when task-set retrieval was unnecessary. Experiments 3 and 4 replaced keypress responses with joystick deflections that afforded approach/avoidance action coding. Stimulus valence modulated the Simon effect (but did not reverse it) when the valence was task-relevant (Experiment 3) as well as when it was task-irrelevant (Experiment 4). Therefore, stimulus valence influences task-set selection and response selection, but the influence on the latter is limited to conditions where responses afford approach/avoidance action coding

    Modeling of electron cyclotron current drive experiments on DIII-D

    Get PDF
    Electron Cyclotron Current Drive (ECCD) is considered a leading candidate for current profile control in Advanced Tokamak (AT) operation. Localized ECCD has been clearly demonstrated in recent proof-of-principle experiments on DIII-D. The measured ECCD efficiency near the magnetic axis agrees well with standard theoretical predictions. However, for off-axis current drive the normalized experimental efficiency does not decrease with minor radius as expected from the standard theory; the observed reduction of ECCD efficiency due to trapped electron effects in the off-axis cases is smaller than theoretical predictions. The standard approach of modeling ECCD in tokamaks has been based on the bounce-average calculations, which assume the bounce frequency is much larger than the effective collision frequency for trapped electrons at all energies. The assumption is clearly invalid at low energies. Finite collisionality will effectively reduce the trapped electron fraction, hence, increase current drive efficiency. Here, a velocity-space connection formula is proposed to estimate the collisionality effect on electron cyclotron current drive efficiency. The collisionality correction gives modest improvement in agreement between theoretical and recent DIII-D experimental results

    One - play, two - play, five - play, and ten-play runs of Prisoner's Dilemma 1

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66600/2/10.1177_002200276601000307.pd

    Response theory for time-resolved second-harmonic generation and two-photon photoemission

    Full text link
    A unified response theory for the time-resolved nonlinear light generation and two-photon photoemission (2PPE) from metal surfaces is presented. The theory allows to describe the dependence of the nonlinear optical response and the photoelectron yield, respectively, on the time dependence of the exciting light field. Quantum-mechanical interference effects affect the results significantly. Contributions to 2PPE due to the optical nonlinearity of the surface region are derived and shown to be relevant close to a plasmon resonance. The interplay between pulse shape, relaxation times of excited electrons, and band structure is analyzed directly in the time domain. While our theory works for arbitrary pulse shapes, we mainly focus on the case of two pulses of the same mean frequency. Difficulties in extracting relaxation rates from pump-probe experiments are discussed, for example due to the effect of detuning of intermediate states on the interference. The theory also allows to determine the range of validity of the optical Bloch equations and of semiclassical rate equations, respectively. Finally, we discuss how collective plasma excitations affect the nonlinear optical response and 2PPE.Comment: 27 pages, including 11 figures, version as publishe

    Reaction Time of a Group of Physics Students

    Full text link
    The reaction time of a group of students majoring in Physics is reported here. Strong co-relation between fatigue, reaction time and performance have been seen and may be useful for academicians and administrators responsible of working out time-tables, course structures, students counsellings etc.Comment: 10 pages, 4 figure

    Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2

    Full text link
    We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {\mu}m thick UFSD produced by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particles (MIPs) from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -27C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. Within the fluence range measured, the advantage of the 35 {\mu}m thick UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap with arXiv:1707.0496

    Time-varying perturbations can distinguish among integrate-to-threshold models for perceptualdecision making in reaction time tasks

    Get PDF
    Several integrate-to-threshold models with differing temporal integration mechanisms have been proposed to describe the accumulation of sensory evidence to a prescribed level prior to motor response in perceptual decision-making tasks. An experiment and simulation studies have shown that the introduction of time-varying perturbations during integration may distinguish among some of these models. Here, we present computer simulations and mathematical proofs that provide more rigorous comparisons among one-dimensional stochastic differential equation models. Using two perturbation protocols and focusing on the resulting changes in the means and standard deviations of decision times, we show that, for high signal-to-noise ratios, drift-diffusion models with constant and time-varying drift rates can be distinguished from Ornstein-Uhlenbeck processes, but not necessarily from each other. The protocols can also distinguish stable from unstable Ornstein-Uhlenbeck processes, and we show that a nonlinear integrator can be distinguished from these linear models by changes in standard deviations. The protocols can be implemented in behavioral experiments.Comment: 32 pages, 9 figures, 3 tables, accepted for publication in Neural Computatio
    • …
    corecore