464 research outputs found

    Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms

    Get PDF
    Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischaemic damage. Major milestones regarding the elucidation of this phenomenon have been passed in the last two decades. The signalling and amplification cascades from the preconditioning stimulus, be it ischaemic or pharmacological, to the putative end‐effectors, including the mechanisms involved in cellular protection, are discussed in this review. Volatile anaesthetics and opioids effectively elicit pharmacological preconditioning. Anaesthetic‐induced preconditioning and ischaemic preconditioning share many fundamental steps, including activation of G‐protein‐coupled receptors, multiple protein kinases and ATP‐sensitive potassium channels (KATP channels). Volatile anaesthetics prime the activation of the sarcolemmal and mitochondrial KATP channels, the putative end‐effectors of preconditioning, by stimulation of adenosine receptors and subsequent activation of protein kinase C (PKC) and by increased formation of nitric oxide and free oxygen radicals. In the case of desflurane, stimulation of α‐ and β‐adrenergic receptors may also be of importance. Similarly, opioids activate δ‐ and κ‐opioid receptors, and this also leads to PKC activation. Activated PKC acts as an amplifier of the preconditioning stimulus and stabilizes, by phosphorylation, the open state of the mitochondrial KATP channel (the main end‐effector in anaesthetic preconditioning) and the sarcolemmal KATP channel. The opening of KATP channels ultimately elicits cytoprotection by decreasing cytosolic and mitochondrial Ca2+ overload. Br J Anaesth 2003; 91: 551-6

    Anaesthetics and cardiac preconditioning. Part II. Clinical implications

    Get PDF
    There is compelling evidence that preconditioning occurs in humans. Experimental studies with potential clinical implications as well as clinical studies evaluating ischaemic, pharmacological and anaesthetic cardiac preconditioning in the perioperative setting are reviewed. These studies reveal promising results. However, there are conflicting reports on the efficacy of preconditioning in the diseased and aged myocardium. In addition, many anaesthetics and a significant number of perioperatively administered drugs affect the activity of cardiac sarcolemmal and mitochondrial KATP channels, the end‐effectors of cardiac preconditioning, and thereby markedly modulate preconditioning effects in myocardial tissue. Although these modulatory effects on KATP channels have been investigated almost exclusively in laboratory investigations, they may have potential implications in clinical medicine. Important questions regarding the clinical utility and applicability of perioperative cardiac preconditioning remain unresolved and need more experimental work and randomized controlled clinical trials. Br J Anaesth 2003; 91: 566-7

    Ischemic postconditioning protects remodeled myocardium via the PI3K-PKB/Akt reperfusion injury salvage kinase pathway

    Get PDF
    OBJECTIVE: We tested whether ischemic postconditioning (IPostC) is protective in remodeled myocardium. METHODS: Post-myocardial infarct (MI)-remodeled hearts after permanent coronary artery ligation and one kidney one clip (1K1C) hypertensive hearts of male Wistar rats were exposed to 40 min of ischemia followed by 90 min of reperfusion. IPostC was induced by six cycles of 10 s reperfusion interspersed by 10 s of no-flow ischemia. Activation of reperfusion injury salvage kinases was measured using Western blotting and in vitro kinase activity assays. RESULTS: IPostC prevented myocardial damage in both MI-remodeled and 1K1C hearts, as measured by decreased infarct size and lactate dehydrogenase release, and improved function. The reduction in infarct size and the recovery of left ventricular contractility achieved by IPostC was less in 1K1C hearts, but was unchanged in MI-remodeled hearts when compared to healthy hearts. In contrast, the recovery of inotropy was unaffected in 1K1C hearts, but was less in MI-remodeled hearts. Inhibition of the phosphatidylinositol 3-kinase (PI3K) pathway with LY294002 abolished the protective effects of IPostC on both disease models and healthy hearts. Western blot analysis in conjunction with in vitro kinase activity assays identified protein kinase B (PKB)/Akt but not p42/p44 extracellular-signal regulated kinase 1/2 (ERK1/2) as the predominant kinase in IPostC-mediated cardioprotection in remodeled hearts. IPostC increased phosphorylation of the PKB/Akt downstream targets eNOS, GSK3beta, and p70S6K in remodeled hearts. CONCLUSION: Our results offer evidence that IPostC mediates cardioprotection in the remodeled rat myocardium primarily via activation of the PI3K-PKB/Akt reperfusion injury salvage kinase pathwa

    Enhanced glucose uptake via GLUT4 fuels recovery from calcium overload after ischaemia-reperfusion injury in sevoflurane- but not propofol-treated hearts

    Get PDF
    Background So far, no study has explored the effects of sevoflurane, propofol, and Intralipid on metabolic flux rates of fatty acid oxidation (FOX) and glucose oxidation (GOX) in hearts exposed to ischaemia-reperfusion. Methods Isolated paced working rat hearts were exposed to 20 min of ischaemia and 30 min of reperfusion. Peri-ischaemic sevoflurane (2 vol%) and propofol (100 µM) in the formulation of 1% Diprivan® were assessed for their effects on oxidative energy metabolism and intracellular diastolic and systolic Ca2+ concentrations. Substrate flux was measured using [3H]palmitate and [14C]glucose and [Ca2+] using indo-1AM. Western blotting was used to determine the expression of the sarcolemmal glucose transporter GLUT4 in lipid rafts. Biochemical analyses of nucleotides, ceramides, and 32 acylcarnitines were also performed. Results Sevoflurane, but not propofol, improved the recovery of left ventricular work (P=0.008) and myocardial efficiency (P=0.008) compared with untreated ischaemic hearts. This functional improvement was accompanied by reduced increases in post-ischaemic diastolic and systolic intracellular Ca2+ concentrations (P=0.008). Sevoflurane, but not propofol, increased GOX (P=0.009) and decreased FOX (P=0.019) in hearts exposed to ischaemia-reperfusion. GLUT4 expression was markedly increased in lipid rafts of sevoflurane-treated hearts (P=0.016). Increased GOX closely correlated with reduced Ca2+ overload. Intralipid alone decreased energy charge and increased long-chain and hydroxyacylcarnitine tissue levels, whereas sevoflurane decreased toxic ceramide formation. Conclusions Enhanced glucose uptake via GLUT4 fuels recovery from Ca2+ overload after ischaemia-reperfusion in sevoflurane- but not propofol-treated hearts. The use of a high propofol concentration (100 µM) did not result in similar protectio

    Functional Characterization of Aquaporin-4 Specific T Cells: Towards a Model for Neuromyelitis Optica

    Get PDF
    Antibodies to the water channel protein aquaporin-4 (AQP4), which is expressed in astrocytic endfeet at the blood brain barrier, have been identified in the serum of Neuromyelitis optica (NMO) patients and are believed to induce damage to astrocytes. However, AQP4 specific T helper cell responses that are required for the generation of anti-AQP4 antibodies and most likely also for the formation of intraparenchymal CNS lesions have not been characterized. specific T cells were present in the natural T cell repertoire of wild type C57BL/6 mice and T cell lines were raised. However, active immunization with these AQP4 peptides did not induce signs of spinal cord disease. Rather, sensitization with AQP4 peptides resulted in production of IFN-γ, but also IL-5 and IL-10 by antigen-specific T cells. Consistent with this cytokine profile, the AQP4 specific antibody response upon immunization with full length AQP4 included IgG1 and IgG2, which are associated with a mixed Th2/Th1 T cell response. restricted AQP4 specific T cell epitopes will allow us to investigate how AQP4 specific autoimmune reactions are regulated and to establish faithful mouse models of NMO that include both cellular and humoral responses against AQP4

    Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis

    Get PDF
    Atypical imaging features of multiple sclerosis lesions include size >2 cm, mass effect, oedema and/or ring enhancement. This constellation is often referred to as ‘tumefactive multiple sclerosis’. Previous series emphasize their unifocal and clinically isolated nature, however, evolution of these lesions is not well defined. Biopsy may be required for diagnosis. We describe clinical and radiographic features in 168 patients with biopsy confirmed CNS inflammatory demyelinating disease (IDD). Lesions were analysed on pre- and post-biopsy magnetic resonance imaging (MRI) for location, size, mass effect/oedema, enhancement, multifocality and fulfilment of Barkhof criteria. Clinical data were correlated to MRI. Female to male ratio was 1.2 : 1, median age at onset, 37 years, duration between symptom onset and biopsy, 7.1 weeks and total disease duration, 3.9 years. Clinical course prior to biopsy was a first neurological event in 61%, relapsing–remitting in 29% and progressive in 4%. Presentations were typically polysymptomatic, with motor, cognitive and sensory symptoms predominating. Aphasia, agnosia, seizures and visual field defects were observed. At follow-up, 70% developed definite multiple sclerosis, and 14% had an isolated demyelinating syndrome. Median time to second attack was 4.8 years, and median EDSS at follow-up was 3.0. Multiple lesions were present in 70% on pre-biopsy MRI, and in 83% by last MRI, with Barkhof criteria fulfilled in 46% prior to biopsy and 55% by follow-up. Only 17% of cases remained unifocal. Median largest lesion size on T2-weighted images was 4 cm (range 0.5–12), with a discernible size of 2.1 cm (range 0.5–7.5). Biopsied lesions demonstrated mass effect in 45% and oedema in 77%. A strong association was found between lesion size, and presence of mass effect and/or oedema (P < 0.001). Ring enhancement was frequent. Most tumefactive features did not correlate with gender, course or diagnosis. Although lesion size >5 cm was associated with a slightly higher EDSS at last follow-up, long-term prognosis in patients with disease duration >10 years was better (EDSS 1.5) compared with a population-based multiple sclerosis cohort matched for disease duration (EDSS 3.5; P < 0.001). Given the retrospective nature of the study, the precise reason for biopsy could not always be determined. This study underscores the diagnostically challenging nature of CNS IDDs that present with atypical clinical or radiographic features. Most have multifocal disease at onset, and develop RRMS by follow-up. Although increased awareness of this broad spectrum may obviate need for biopsy in many circumstances, an important role for diagnostic brain biopsy may be required in some cases

    Pediatric multiple sclerosis: update on diagnostic criteria, imaging, histopathology and treatment choices

    Get PDF
    Pediatric multiple sclerosis (MS) represents less than 5% of the MS population, but patients with pediatric-onset disease reach permanent disability at a younger age than adult onset patients. Accurate diagnosis at presentation and optimal long-term treatment is vital to mitigate ongoing neuroinflammation and irreversible neurodegeneration. However, it may be difficult to early differentiate pediatric MS from acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica spectrum disorders (NMOSD) as they often have atypical presentation that differs from that of adult-onset MS. The purpose of this review is to summarize the updated views on diagnostic criteria, imaging, histopathology and treatment choices

    Cerebrospinal Fluid B Cells Correlate with Early Brain Inflammation in Multiple Sclerosis

    Get PDF
    Background: There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS). Methodology/Principal Findings: In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF) cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS), relapsing-remitting (RR) and chronic progressive (CP) MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD1382) and plasma blasts (CD19+CD138+) in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matri

    Immunodominant T Cell Determinants of Aquaporin-4, the Autoantigen Associated with Neuromyelitis Optica

    Get PDF
    Autoantibodies that target the water channel aquaporin-4 (AQP4) in neuromyelitis optica (NMO) are IgG1, a T cell-dependent Ig subclass. However, a role for AQP4-specific T cells in this CNS inflammatory disease is not known. To evaluate their potential role in CNS autoimmunity, we have identified and characterized T cells that respond to AQP4 in C57BL/6 and SJL/J mice, two strains that are commonly studied in models of CNS inflammatory diseases. Mice were immunized with either overlapping peptides or intact hAQP4 protein encompassing the entire 323 amino acid sequence. T cell determinants identified from examination of the AQP4 peptide (p) library were located within AQP4 p21-40, p91-110, p101-120, p166-180, p231-250 and p261-280 in C57BL/6 mice, and within p11-30, p21-40, p101-120, p126-140 and p261-280 in SJL/J mice. AQP4-specific T cells were CD4+ and MHC II-restricted. In recall responses to immunization with intact AQP4, T cells responded primarily to p21-40, indicating this region contains the immunodominant T cell epitope(s) for both strains. AQP4 p21-40-primed T cells secreted both IFN-γ and IL-17. The core immunodominant AQP4 21-40 T cell determinant was mapped to residues 24-35 in C57BL/6 mice and 23-35 in SJL/J mice. Our identification of the AQP4 T cell determinants and characterization of its immunodominant determinant should permit investigators to evaluate the role of AQP4-specific T cells in vivo and to develop AQP4-targeted murine NMO models
    corecore