51 research outputs found

    Implication des vésicules extracellulaires des cellules initiatrices tumorales dans l’augmentation de la perméabilité vasculaire du glioblastome

    Get PDF
    Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes.Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome

    Endothelial Secreted Factors Suppress Mitogen Deprivation-Induced Autophagy and Apoptosis in Glioblastoma Stem-Like Cells

    Get PDF
    International audienceRapidly growing and highly vascularized tumors, such as glioblastoma multiforme, contain heterogeneous areas within the tumor mass, some of which are inefficiently supplied with nutrients and oxygen. While the cell death rate is elevated in such zones, tumor cells are still suspected to grow and survive independently of extracellular growth factors. In line with this, glioblastoma stem-like cells (GSCs) are found closely associated with brain vasculature in situ, and as such are most likely in a protected microenvironment. However, the behavior of GSCs under deprived conditions has not been explored in detail. Using a panel of 14 patient-derived GSCs, we report that ex vivo mitogen deprivation impaired self-renewal capability, abolished constitutive activation of the mTor pathway, and impinged on GSC survival via the engagement of autophagic and apoptotic cascades. Moreover, pharmacological inhibition of the mTor pathway recapitulated the mitogen deprivation scenario. In contrast, blocking either apoptosis or autophagy, or culturing GSCs with endothelial-secreted factors partly restored mTor pathway activation and rescued GSC survival. Overall, our data suggest that GSCs are addicted to mTor, as their survival and self-renewal are profoundly dependent on this signaling axis. Thus, as mTor governs the fate of GSCs under both deprivation conditions and in the presence of endothelial factors, it could be a key target for therapeutic purposes

    Aberrant methylation of tRNAs links cellular stress to neuro-developmental disorders.

    Get PDF
    Mutations in the cytosine-5 RNA methyltransferase NSun2 cause microcephaly and other neurological abnormalities in mice and human. How post-transcriptional methylation contributes to the human disease is currently unknown. By comparing gene expression data with global cytosine-5 RNA methylomes in patient fibroblasts and NSun2-deficient mice, we find that loss of cytosine-5 RNA methylation increases the angiogenin-mediated endonucleolytic cleavage of transfer RNAs (tRNA) leading to an accumulation of 5' tRNA-derived small RNA fragments. Accumulation of 5' tRNA fragments in the absence of NSun2 reduces protein translation rates and activates stress pathways leading to reduced cell size and increased apoptosis of cortical, hippocampal and striatal neurons. Mechanistically, we demonstrate that angiogenin binds with higher affinity to tRNAs lacking site-specific NSun2-mediated methylation and that the presence of 5' tRNA fragments is sufficient and required to trigger cellular stress responses. Furthermore, the enhanced sensitivity of NSun2-deficient brains to oxidative stress can be rescued through inhibition of angiogenin during embryogenesis. In conclusion, failure in NSun2-mediated tRNA methylation contributes to human diseases via stress-induced RNA cleavage

    Impairment of angiogenesis by fatty acid synthase inhibition Involves mTOR malonylation

    Get PDF
    The role of fatty acid synthesis in endothelial cells (ECs) remains incompletely characterized. We report that fatty acid synthase knockdown (FASNKD) in ECs impedes vessel sprouting by reducing proliferation. Endothelial loss of FASN impaired angiogenesis in vivo, while FASN blockade reduced pathological ocular neovascularization, at >10-fold lower doses than used for anti-cancer treatment. Impaired angiogenesis was not due to energy stress, redox imbalance, or palmitate depletion. Rather, FASNKD elevated malonyl-CoA levels, causing malonylation (a post-translational modification) of mTOR at lysine 1218 (K1218). mTOR K-1218 malonylation impaired mTOR complex 1 (mTORC1) kinase activity, thereby reducing phosphorylation of downstream targets (p70S6K/4EBP1). Silencing acetyl-CoA carboxylase 1 (an enzyme producing malonyl-CoA) normalized malonyl-CoA levels and reactivated mTOR in FASNKD ECs. Mutagenesis unveiled the importance of mTOR K1218 malonylation for angiogenesis. This study unveils a novel role of FASN in metabolite signaling that contributes to explaining the anti-angiogenic effect of FASN blockade

    The implication of cancer stem-like cell derived extracellular vesicle in glioblastoma vascular permeability increase

    No full text
    Les capillaires cérébraux sont caractérisés par une structure et une organisation particulière au sein de l’unité neurovasculaire. Au travers de jonctions endothéliales particulièrement sélectives, la barrière hémato-encéphalique (BHE) orchestre les échanges de cellules, fluides, protéines et métabolites plasmatiques entre le sang et le compartiment cérébral. La VE-cadhérine, protéine transmembranaire des jonctions endothéliales, est particulièrement importante dans l’intégrité vasculaire puisque sa déstabilisation entraine un affaiblissement de la BHE et conduit à sa rupture dans certaines pathologies. Le glioblastome est une tumeur cérébrale extrêmement agressive et associée à un haut degré de vascularisation dont la perméabilité est anormalement élevée. Ceci contribue à la formation d’œdèmes vasculaires péri-tumoraux préjudiciables pour la santé du patient. Depuis la dernière décennie, un grand nombre d’études ont relié la présence d’une sous-population de cellules souches gliomateuses (CSG) à l’initiation, la récurrence et l’agressivité du glioblastome. De façon importante, ces CSG sont localisées dans un microenvironnement particulier, appelé niche vasculaire, dans lequel elles communiquent étroitement et échangent de manière bidirectionnelle avec l’endothélium cérébral. Sur la base d’un modèle de coculture entre CSG issues de patients, et cellules endothéliales cérébrales récapitulant les propriétés de la BHE, notre laboratoire a porté son attention sur la Sémaphorine 3A (Séma3A). Cette protéine est en effet sécrétée par les CSG et exerce, via son corécepteur Neuropiline-1 (Nrp-1), une action positive sur la perméabilité vasculaire par déstabilisation de la VE-cadhérine. Durant mes travaux de thèse, nous avons identifié et caractérisé la présence de la Séma3A à la membrane de vésicules extracellulaires (EV) produites par les CSG. Un nombre grandissant d’études met en exergue l’implication de ces vésicules dans la biologie tumorale. Dans ce sens, nous avons démontré que les EV des CSG peuvent pénétrer dans les cellules endothéliales, et moduler leurs propriétés intrinsèques. Au travers de modèles in vivo originaux et de la combinaison de stratégies génétiques (ARN interférent) et pharmacologiques (anticorps bloquant humanisés), nous avons d’une part montré que la Séma3A, portée par les EV, agit spécifiquement via la Nrp-1 exprimée par les cellules endothéliales afin d’augmenter leur perméabilité. D’autre part, dans un modèle de xénogreffe orthotopique de CSG, nous avons identifié une augmentation significative du taux de Séma3A dans la fraction de EV circulantes. De manière intéressante, des résultats similaires ont été obtenus à partir de prélèvements de patients glioblastome nouvellement diagnostiqués. La Séma3A de ces vésicules, apte à augmenter la perméabilité vasculaire à distance, in vitro et in vivo au travers de la Nrp-1, représenterait donc un bon candidat en tant que futur marqueur théranostique du glioblastome.Brain microvessels are characterized by specific structure and organization within the neurovascular unit. Through highly selective endothelial junctions, the blood-brain barrier (BBB) controls exchanges of cells, fluids, plasmatic proteins and metabolites between blood and the cerebral compartment. VE-cadherin, a transmembrane protein of endothelial junctions, is of most importance in the vascular integrity. Indeed, its destabilization leads to BBB weakening and also breaking in some pathology. Glioblastoma is a highly aggressive brain tumour characterized by a high vascularization rate and abnormal vascular permeability. These properties promote in turn perivascular œdema, harmful for the patient. Since the last decade, a growing number of studies link glioblastoma stem-like cell (GSC) population to the initiation, recurrence and aggressiveness of such cancer. Interestingly, GSCs are located within the vascular niche, a specific microenvironment where they survive, communicate and exchange factors with the microvascular endothelium. On the base of a coculture model between patient-derived GSCs and brain microvascular endothelial cells which recapitulate BBB properties, our laboratory has focused on Semaphorin 3A (Sema3A). Sema3A is a GSC secreted protein and acts through its coreceptor Neuropilin-1 (Nrp-1) which in turn destabilizes VE-cadherin and promotes vascular permeability. During my thesis, we have identified and characterized Sema3A at the membrane of GSC secreted extracellular vesicles (EVs). A growing number of studies highlight EVs as important actors of tumour biology, in this way we have demonstrated that GSC-derived EVs can be uptake by endothelial cells and modulate their intrinsic properties. Through original in vivo models in combination with genetic (RNA interference) and pharmacologic strategies (humanised blocking antibodies), we have demonstrated that EV-carried Sema3A acts specifically through endothelial cells Nrp-1 to promote permeability. Furthermore, in orthotopic GSC xenograft we have identified a significant increase in the Sema3A EV-fraction collected from peripheral blood. Interestingly, similar results were obtained from newly diagnosed glioblastoma blood samples. Moreover, Sema3A from this fraction is a potent propermeability factor that can act at distance through Nrp-1 both in vitro and in vivo. Altogether, our results suggest that EV-carried Sema3A orchestrates loss of barrier integrity in glioblastoma and may be of interest for prognostic purposes

    Assaying the Action of Secreted Semaphorins on Vascular Permeability

    No full text
    International audienc

    BRAF, A gatekeeper controlling endothelial permeability

    No full text
    The RAF/MEK/ERK signal transduction pathway is commonly deregulated in cancer and is activated by various stimuli regulating a variety of cell responses. In wild-type endothelial cells, upon permeability stimuli, ROKα, RAF1, BRAF, and RAP1 become activated, inducing a cascade of reactions resulting in F-actin remodeling and increased cell permeability. Here, Dorard et al. showed that BRAF ablated cells had more RAF1/ROKα dimerization and relocalization to VE-cadherin occurred, ultimately leading to less F-actin content and reduced vessel permeability.status: Published onlin

    L'angiogenèse tumorale Quand l'arbre de vie tourne mal

    No full text
    International audienceAngiogenesis is a highly controlled multistep process that allows the formation of a harmonious vascular network during embryonic development and in adults. In addition, tumor progression also involves a dedicated blood vessel supply to fuel the tumor mass, pirating physiological molecular and cellular mechanisms. However, tumor angiogenesis is a quite inefficient process, as perfusion is not optimal, vessel integrity is not guaranteed, and vessel network is irrationally organized. While fundamental molecular and cellular mechanisms have been the field of intense investigation, anticancer therapies have evolved with the possibility to target tumor angiogenesis. This review presents the different steps involved in the formation of normal and tumor angiogenesis, and how tumor vasculature abnormalities could contribute to tumorigenesis and conventional therapy failure
    • …
    corecore