24 research outputs found

    An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY Challenge

    Get PDF
    There is tremendous potential for genome sequencing to improve clinical diagnosis and care once it becomes routinely accessible, but this will require formalizing research methods into clinical best practices in the areas of sequence data generation, analysis, interpretation and reporting. The CLARITY Challenge was designed to spur convergence in methods for diagnosing genetic disease starting from clinical case history and genome sequencing data. DNA samples were obtained from three families with heritable genetic disorders and genomic sequence data were donated by sequencing platform vendors. The challenge was to analyze and interpret these data with the goals of identifying disease-causing variants and reporting the findings in a clinically useful format. Participating contestant groups were solicited broadly, and an independent panel of judges evaluated their performance. RESULTS: A total of 30 international groups were engaged. The entries reveal a general convergence of practices on most elements of the analysis and interpretation process. However, even given this commonality of approach, only two groups identified the consensus candidate variants in all disease cases, demonstrating a need for consistent fine-tuning of the generally accepted methods. There was greater diversity of the final clinical report content and in the patient consenting process, demonstrating that these areas require additional exploration and standardization. CONCLUSIONS: The CLARITY Challenge provides a comprehensive assessment of current practices for using genome sequencing to diagnose and report genetic diseases. There is remarkable convergence in bioinformatic techniques, but medical interpretation and reporting are areas that require further development by many groups

    Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds

    Get PDF
    status: publishe

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Cancer In Silico

    No full text

    Immune profiling of premalignant lesions in patients with Lynch syndrome

    No full text
    IMPORTANCE: Colorectal carcinomas in patients with Lynch syndrome (LS) arise in a background of mismatch repair (MMR) deficiency, display a unique immune profile with upregulation of immune checkpoints, and response to immunotherapy. However, there is still a gap in understanding the pathogenesis of MMR-deficient colorectal premalignant lesions, which is essential for the development of novel preventive strategies for LS. OBJECTIVE: To characterize the immune profile of premalignant lesions from a cohort of patients with LS. DESIGN, SETTING, AND PARTICIPANTS: Whole-genome transcriptomic analysis using next-generation sequencing was performed in colorectal polyps and carcinomas of patients with LS. As comparator and model of MMR-proficient colorectal carcinogenesis, we used samples from patients with familial adenomatous polyposis (FAP). In addition, a total of 47 colorectal carcinomas (6 hypermutants and 41 nonhypermutants) were obtained from The Cancer Genome Atlas (TCGA) for comparisons. Samples were obtained from the University of Texas MD Anderson Cancer Center and "Regina Elena" National Cancer Institute, Rome, Italy. All diagnoses were confirmed by genetic testing. Polyps were collected at the time of endoscopic surveillance and tumors were collected at the time of surgical resection. The data were analyzed from October 2016 to November 2017. MAIN OUTCOMES AND MEASURES: Assessment of the immune profile, mutational signature, mutational and neoantigen rate, and pathway enrichment analysis of neoantigens in LS premalignant lesions and their comparison with FAP premalignant lesions, LS carcinoma, and sporadic colorectal cancers from TCGA. RESULTS: The analysis was performed in a total of 28 polyps (26 tubular adenomas and 2 hyperplastic polyps) and 3 early-stage LS colorectal tumors from 24 patients (15 [62%] female; mean [SD] age, 48.12 [15.38] years) diagnosed with FAP (n = 10) and LS (n = 14). Overall, LS polyps presented with low mutational and neoantigen rates but displayed a striking immune activation profile characterized by CD4 T cells, proinflammatory (tumor necrosis factor, interleukin 12) and checkpoint molecules (LAG3 [lymphocyte activation gene 3] and PD-L1 [programmed cell death 1 ligand 1]). This immune profile was independent of mutational rate, neoantigen formation, and MMR status. In addition, we identified a small subset of LS polyps with high mutational and neoantigen rates that were comparable to hypermutant tumors and displayed additional checkpoint (CTLA4 [cytotoxic T-lymphocyte-associated protein 4]) and neoantigens involved in DNA damage response (ATM and BRCA1 signaling). CONCLUSIONS AND RELEVANCE: These findings challenge the canonical model, based on the observations made in carcinomas, that emphasizes a dependency of immune activation on the acquisition of high levels of mutations and neoantigens, thus opening the door to the implementation of immune checkpoint inhibitors and vaccines for cancer prevention in LS
    corecore