1,083 research outputs found

    Plasma polymerization of cyclopropylamine in a low-pressure cylindrical magnetron reactor: A PIC-MC study of the roles of ions and radicals

    Get PDF
    A study of plasma polymerization of cyclopropylamine in a low-pressure cylindrical magnetron reactor is presented. Both experimental and numerical approaches are used to investigate thin film growth mechanisms and polymer film properties depending on the magnetic field strength. Combining both approaches enables the consistency of the numerical model to be checked while acquiring data for understanding the observed phenomena. Samples are first analyzed by x-ray photoelectron spectroscopy, time of flight secondary ion mass spectrometry, and ion beam analysis to illustrate the differences in degrees of chemical functionalization and cross-linking between the regions of high and low magnetic fields. 3D particle-in-cell Monte Carlo collision simulations are then performed to shed light on experimental results, after implementing a set of electron-cyclopropylamine collision cross sections computed using the R-matrix method. The simulations enable the main radicals produced in the discharge to be tracked by determining their production rates, how they diffuse in the plasma, and how they absorb on the reactor walls. Additionally, the cyclopropylamine ion (C₃H₇Nâș) behavior is followed to bring insights into the respective roles of ions and radicals during the plasma polymerization process

    Short isthmic versus long trans-isthmic C2 screw: anatomical and biomechanical evaluation

    Get PDF
    INTRODUCTION: The Harms technique is now considered as the gold standard to stabilize C1-C2 cervical spine. It has been reported to decrease the risk of vertebral artery injury. However, the risk of vascular injury does not totally disappear, particularly due to the proximity of the trans-isthmic C2 screw with the foramen transversarium of C2. In order to decrease this risk of vertebral artery injury, it has been proposed to use a shorter screw which stops before the foramen transversarium. OBJECT: The main objective was to compare the pull-out strength of long trans-isthmic screw (LS) versus short isthmic screw (SS) C2 screw. An additional morphological study was also performed. METHOD: Thirteen fresh-frozen human cadaveric cervical spines were included in the study. Orientation, width and height of the isthmus of C2 were measured on CT scan. Then, 3.5-mm titanium screws were inserted in C2 isthmus according to the Harms technique. Each specimen received a LS and a SS. The side and the order of placement were determined with a randomization table. Pull-out strengths and stiffness were evaluated with a testing machine, and paired samples were compared using Wilcoxon signed-rank test and also the Kaplan-Meier method. RESULTS: The mean isthmus transversal orientation was 20° ± 6°. The mean width of C2 isthmus was less than 3.5 mm in 35 % of the cases. The mean pull-out strength for LS was 340 ± 85 versus 213 ± 104 N for SS (p = 0.004). The mean stiffness for the LS was 144 ± 40 and 97 ± 54 N/mm for the SS (p = 0.02). DISCUSSION: The pull-out strength of trans-isthmic C2 screws was significantly higher (60 % additional pull-out resistance) than SSs. Although associated with an inferior resistance, SSs may be used in case of narrow isthmus which contraindicates 3.5-mm screw insertion but does not represent the first option for C2 instrumentation. LEVEL OF EVIDENCE: Level V

    Scaling MAP-Elites to Deep Neuroevolution

    Get PDF
    Quality-Diversity (QD) algorithms, and MAP-Elites (ME) in particular, have proven very useful for a broad range of applications including enabling real robots to recover quickly from joint damage, solving strongly deceptive maze tasks or evolving robot morphologies to discover new gaits. However, present implementations of MAP-Elites and other QD algorithms seem to be limited to low-dimensional controllers with far fewer parameters than modern deep neural network models. In this paper, we propose to leverage the efficiency of Evolution Strategies (ES) to scale MAP-Elites to high-dimensional controllers parameterized by large neural networks. We design and evaluate a new hybrid algorithm called MAP-Elites with Evolution Strategies (ME-ES) for post-damage recovery in a difficult high-dimensional control task where traditional ME fails. Additionally, we show that ME-ES performs efficient exploration, on par with state-of-the-art exploration algorithms in high-dimensional control tasks with strongly deceptive rewards.Comment: Accepted to GECCO 202

    An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In metazoans, the hematopoietic system plays a key role both in normal development and in defense of the organism. In Drosophila, the cellular immune response involves three types of blood cells: plasmatocytes, crystal cells and lamellocytes. This last cell type is barely present in healthy larvae, but its production is strongly induced upon wasp parasitization or in mutant contexts affecting larval blood cell homeostasis. Notably, several zygotic mutations leading to melanotic mass (or "tumor") formation in larvae have been associated to the deregulated differentiation of lamellocytes. To gain further insights into the gene regulatory network and the mechanisms controlling larval blood cell homeostasis, we conducted a tissue-specific loss of function screen using hemocyte-specific Gal4 drivers and <it>UAS-dsRNA </it>transgenic lines.</p> <p>Results</p> <p>By targeting around 10% of the Drosophila genes, this <it>in vivo </it>RNA interference screen allowed us to recover 59 melanotic tumor suppressor genes. In line with previous studies, we show that melanotic tumor formation is associated with the precocious differentiation of stem-cell like blood progenitors in the larval hematopoietic organ (the lymph gland) and the spurious differentiation of lamellocytes. We also find that melanotic tumor formation can be elicited by defects either in the fat body, the embryo-derived hemocytes or the lymph gland. In addition, we provide a definitive confirmation that lymph gland is not the only source of lamellocytes as embryo-derived plasmatocytes can differentiate into lamellocytes either upon wasp infection or upon loss of function of the Friend of GATA cofactor U-shaped.</p> <p>Conclusions</p> <p>In this study, we identify 55 genes whose function had not been linked to blood cell development or function before in Drosophila. Moreover our analyses reveal an unanticipated plasticity of embryo-derived plasmatocytes, thereby shedding new light on blood cell lineage relationship, and pinpoint the Friend of GATA transcription cofactor U-shaped as a key regulator of the plasmatocyte to lamellocyte transformation.</p

    Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests

    Get PDF
    High animal and plant richness in tropical rainforest communities has long intrigued naturalists. It is unknown if similar hyperdiversity patterns are reflected at the microbial scale with unicellular eukaryotes (protists). Here we show, using environmental metabarcoding of soil samples and a phylogeny-aware cleaning step, that protist communities in Neotropical rainforests are hyperdiverse and dominated by the parasitic Apicomplexa, which infect arthropods and other animals. These host-specific parasites potentially contribute to the high animal diversity in the forests by reducing population growth in a density-dependent manner. By contrast, too few operational taxonomic units (OTUs) of Oomycota were found to broadly drive high tropical tree diversity in a host-specific manner under the Janzen-Connell model. Extremely high OTU diversity and high heterogeneity between samples within the same forests suggest that protists, not arthropods, are the most diverse eukaryotes in tropical rainforests. Our data show that protists play a large role in tropical terrestrial ecosystems long viewed as being dominated by macroorganisms

    Mass Photometry of Membrane Proteins

    Get PDF
    Integral membrane proteins (IMPs) are biologically highly significant but challenging to study because they require maintaining a cellular lipid-like environment. Here, we explore the application of mass photometry (MP) to IMPs and membrane-mimetic systems at the single-particle level. We apply MP to amphipathic vehicles, such as detergents and amphipols, as well as to lipid and native nanodiscs, characterizing the particle size, sample purity, and heterogeneity. Using methods established for cryogenic electron microscopy, we eliminate detergent background, enabling high-resolution studies of membrane-protein structure and interactions. We find evidence that, when extracted from native membranes using native styrene-maleic acid nanodiscs, the potassium channel KcsA is present as a dimer of tetramers—in contrast to results obtained using detergent purification. Finally, using lipid nanodiscs, we show that MP can help distinguish between functional and non-functional nanodisc assemblies, as well as determine the critical factors for lipid nanodisc formation

    Proteomic-based stratification of intermediate-risk prostate cancer patients

    Full text link
    Gleason grading is an important prognostic indicator for prostate adenocarcinoma and is crucial for patient treatment decisions. However, intermediate-risk patients diagnosed in the Gleason grade group (GG) 2 and GG3 can harbour either aggressive or non-aggressive disease, resulting in under- or overtreatment of a significant number of patients. Here, we performed proteomic, differential expression, machine learning, and survival analyses for 1,348 matched tumour and benign sample runs from 278 patients. Three proteins (F5, TMEM126B, and EARS2) were identified as candidate biomarkers in patients with biochemical recurrence. Multivariate Cox regression yielded 18 proteins, from which a risk score was constructed to dichotomize prostate cancer patients into low- and high-risk groups. This 18-protein signature is prognostic for the risk of biochemical recurrence and completely independent of the intermediate GG. Our results suggest that markers generated by computational proteomic profiling have the potential for clinical applications including integration into prostate cancer management
    • 

    corecore