94 research outputs found

    Fathers matter: male body mass affects life-history traits in a size-dimorphic seabird

    Get PDF
    One of the predicted consequences of climate change is a shift in body mass distributions within animal populations. Yet body mass, an important component of the physiological state of an organism, can affect key life-history traits and consequently population dynamics. Over the past decades, the wandering albatross—a pelagic seabird providing bi-parental care with marked sexual size dimorphism—has exhibited an increase in average body mass and breeding success in parallel with experiencing increasing wind speeds. To assess the impact of these changes, we examined how body mass affects five key life-history traits at the individual level: adult survival, breeding probability, breeding success, chick mass and juvenile survival. We found that male mass impacted all traits examined except breeding probability, whereas female mass affected none. Adult male survival increased with increasing mass. Increasing adult male mass increased breeding success and mass of sons but not of daughters. Juvenile male survival increased with their chick mass. These results suggest that a higher investment in sons by fathers can increase their inclusive fitness, which is not the case for daughters. Our study highlights sex-specific differences in the effect of body mass on the life history of a monogamous species with bi-parental care

    Energy-based step selection analysis : modelling the energetic drivers of animal movement and habitat use

    Get PDF
    We acknowledge funding from Mitacs Canada, the Canadian Association of Zoos and Aquariums, Canadian Wildlife Federation, Environment and Climate Change Canada, Hauser Bears, Natural Sciences and Engineering Research Council of Canada, Polar Bears International, Polar Continental Shelf Project, Quark Expeditions, United States Department of the Interior (Bureau of Ocean Energy Management), and World Wildlife Fund Canada.1. The energetic gains from foraging and costs of movement are expected to be key drivers of animal decision-making, as their balance is a large determinant of body condition and survival. This fundamental perspective is often missing from habitat selection studies, which mainly describe correlations between space use and environmental features, rather than the mechanisms behind these correlations. 2. To address this gap, we present a novel parameterisation of step selection functions (SSFs), that we term the energy selection function (ESF). In this model, the likelihood of an animal selecting a movement step depends directly on the corresponding energetic gains and costs, and we can therefore assess how moving animals choose habitat based on energetic considerations. 3. The ESF retains the mathematical convenience and practicality of other SSFs and can be quickly fitted using standard software. In this article, we outline a workflow, from data gathering to statistical analysis, and use a case study of polar bears Ursus maritimus to demonstrate application of the model. 4. We explain how defining gains and costs at the scale of the movement step allows us to include information about resource distribution, landscape resistance and movement patterns. We further demonstrate this process with a case study of polar bears and show how the parameters can be interpreted in terms of selection for energetic gains and against energetic costs. 5. The ESF is a flexible framework that combines the energetic consequences of both movement and resource selection, thus incorporating a key mechanism into habitat selection analysis. Further, because it is based on familiar habitat selection models, the ESF is widely applicable to any study system where energetic gains and costs can be derived, and has immense potential for methodological extensions.PostprintPeer reviewe

    Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012

    Get PDF
    Few biodiversity indicators are available that reflect the state of broad-sense biodiversity—rather than of particular taxa—at fine spatial and temporal resolution. One such indicator, the Biodiversity Intactness Index (BII), estimates how the average abundance of the native terrestrial species in a region compares with their abundances in the absence of pronounced human impacts. We produced annual maps of modelled BII at 30-arc-second resolution (roughly 1 km at the equator) across tropical and subtropical forested biomes, by combining annual data on land use, human population density and road networks, and statistical models of how these variables affect overall abundance and compositional similarity of plants, fungi, invertebrates and vertebrates. Across tropical and subtropical biomes, BII fell by an average of 1.9 percentage points between 2001 and 2012, with 81 countries seeing an average reduction and 43 an average increase; the extent of primary forest fell by 3.9% over the same period. We did not find strong relationships between changes in BII and countries’ rates of economic growth over the same period; however, limitations in mapping BII in plantation forests may hinder our ability to identify these relationships. This is the first time temporal change in BII has been estimated across such a large region

    Improving Species Distribution Modelling of freshwater invasive species for management applications

    Get PDF
    Freshwater ecosystems rank among the most endangered ecosystems in the world and are under increasing threat from aquatic invasive species (AIS). Understanding the range expansion of AIS is key for mitigating their impacts. Most approaches rely on Species Distribution Models (SDMs) to predict the expansion of AIS, using mainly environmental variables, yet ignore the role of human activities in favouring the introduction and range expansion of AIS. In this study, we use five SDM algorithms (independently and in ensemble) and two accuracy measures (TSS, AUC), combined with a null modelling approach, to assess the predictive performance of the models and to quantify which predictors (environmental and anthropogenic from the native and introduced regions) best explain the distribution of nine freshwater invasive species (including fish, arthropods, molluscs, amphibians and reptiles) in a large island (Great Britain), and which species characteristics affect model performance. Our results show that the distribution of invasive species is difficult to predict by SDMs, even in cases when TSS and AUC model accuracy values are high. Our study strongly advocates the use of null models for testing SDMs performance and the inclusion of information from the native area and a variety of both human-related and environmental predictors for a more accurate modelling of the range expansion of AIS. Otherwise, models that only include climatic variables, or rely only on standard accuracy measures or a single algorithm, might result in mismanagement of AIS

    ‘You shall not pass!’: quantifying barrier permeability and proximity avoidance by animals

    Get PDF
    1. Impediments to animal movement are ubiquitous and vary widely in both scale and permeability. It is essential to understand how impediments alter ecological dynamics via their influence on animal behavioural strategies governing space use and, for anthropogenic features such as roads and fences, how to mitigate these effects to effectively manage species and landscapes.2. Here, we focused primarily on barriers to movement, which we define as features that cannot be circumnavigated but may be crossed. Responses to barriers will be influenced by the movement capabilities of the animal, its proximity to the barriers, and habitat preference. We developed a mechanistic modelling framework for simultaneously quantifying the permeability and proximity effects of barriers on habitat preference and movement.3. We used simulations based on our model to demonstrate how parameters on movement, habitat preference and barrier permeability can be estimated statistically. We then applied the model to a case study of road effects on wild mountain reindeer summer movements.4. This framework provided unbiased and precise parameter estimates across a range of strengths of preferences and barrier permeabilities. The quality of permeability estimates, however, was correlated with the number of times the barrier is crossed and the number of locations in proximity to barriers. In the case study we found that reindeer avoided areas near roads and that roads are semi-permeable barriers to movement. There was strong avoidance of roads extending up to c. 1 km for four of five animals, and having to cross roads reduced the probability of movement by 68·6% (range 3·5–99·5%).5. Human infrastructure has embedded within it the idea of networks: nodes connected by linear features such as roads, rail tracks, pipelines, fences and cables, many of which divide the landscape and limit animal movement. The unintended but potentially profound consequences of infrastructure on animals remain poorly understood. The rigorous framework for simultaneously quantifying movement, habitat preference and barrier permeability developed here begins to address this knowledge gap

    Impacts of existing and planned hydropower dams on river fragmentation in the Balkan Region

    Get PDF
    The Balkan region has some of the best conserved rivers in Europe, but is also the location of ~3000 planned hydropower dams that are expected to help decarbonise energy production. A conflict between policies that promote renewable hydropower and those that prioritise river conservation has ensued, which can only be resolved with the help of reliable information. Using ground-truthed barrier data, we analysed the extent of current longitudinal river fragmentation in the Balkan region and simulated nine dam construction scenarios that varied depending on the number, location and size of the planned dams. Balkan rivers are currently fragmented by 83,017 barriers and have an average barrier density of 0.33 barriers/km after correcting for barrier underreporting; this is 2.2 times lower than the mean barrier density found across Europe and serves to highlight the relatively unfragmented nature of these rivers. However, our analysis shows that all simulated dam construction scenarios would result in a significant loss of connectivity compared to existing conditions. The largest loss of connectivity (−47 %), measured as reduction in barrier-free length, would occur if all planned dams were built, 20 % of which would impact on protected areas. The smallest loss of connectivity (−8 %) would result if only large dams (>10 MW) were built. In contrast, building only small dams (<10 MW) would cause a 45 % loss of connectivity while only contributing 32 % to future hydropower capacity. Hence, the construction of many small hydropower plants will cause a disproportionately large increase in fragmentation that will not be accompanied by a corresponding increase in hydropower. At present, hydropower development in the Balkan rivers does not require Strategic Environmental Assessment, and does not consider cumulative impacts. We encourage planners and policy makers to explicitly consider trade-offs between gains in hydropower and losses in river connectivity at the river basin scale.Impacts of existing and planned hydropower dams on river fragmentation in the Balkan RegionpublishedVersio

    Human land use is comparable to climate as a driver of global plant occurrence and abundance across life forms

    Get PDF
    Publication history: Accepted - 23 May 2023; Published online - 9 June 2023.Aim Historically, climate has been a dominant driver of global vegetation patterns. Recently, ecological understanding has been updated to acknowledge the influence of human land use (the dominant driver of biodiversity change) in shaping global vegetation patterns. We test whether RaunkiĂŠr's life form, a plant classification system designed to reflect climatic drivers, affects how plants respond to both land use and climate. Location Forty-one countries across six continents. Time period 1990 to 2013. Major taxa studied Terrestrial plants. Methods Combining data from the biodiversity and land use database PREDICTS, and plant trait databases TRY and BIEN, we use generalized linear mixed models with weighted effects coding to test whether RaunkiĂŠr's life form affects plant response to land use and climate in over 4800 species at over 300 sites globally. Results We provide evidence that human land use is comparable to climate in influencing life form occurrence and that land use produces divergent outcomes across life forms. Main conclusions Combined with climatic suitability, land use acts as a filter contracting the realized niche of trees and expanding the realized niche of disturbance-tolerant species. Our results highlight the fundamental role of human activity in shaping species' distribution.Irish Research Council, Grant/Award Number: GOIPD/2016/324, GOIPG/2018/475 and IRCLA/2017/60; Prince Albert II of Monaco Foundation (though Plants Under Pressure II), Grant/Award Number: E/M014533/

    Fine-scale changes in speed and altitude suggest protean movements in homing pigeon flights

    Get PDF
    The power curve provides a basis for predicting adjustments that animals make in flight speed, for example in relation to wind, distance, habitat foraging quality and objective. However, relatively few studies have examined how animals respond to the landscape below them, which could affect speed and power allocation through modifications in climb rate and perceived predation risk. We equipped homing pigeons (Columba livia) with high-frequency loggers to examine how flight speed, and hence effort, varies in relation to topography and land cover. Pigeons showed mixed evidence for an energy-saving strategy, as they minimized climb rates by starting their ascent ahead of hills, but selected rapid speeds in their ascents. Birds did not modify their speed substantially in relation to land cover, but used higher speeds during descending flight, highlighting the importance of considering the rate of change in altitude before estimating power use from speed. Finally, we document an unexpected variability in speed and altitude over fine scales; a source of substantial energetic inefficiency. We suggest this may be a form of protean behaviour adopted to reduce predation risk when flocking is not an option, and that such a strategy could be widespread

    Setting priority conservation management regions to reverse rapid range decline of a key neotropical forest ungulate

    Get PDF
    Mammals are important components of biodiversity that have been drastically and rapidly impacted by climate change, habitat loss, and anthropogenic pressure. Understanding key species distribution to optimize conservation targets is both urgent and necessary to reverse the current biodiversity crisis. Herein, we applied habitat suitability models for a key Neotropical forest ungulate, the white-lipped peccary (WLP Tayassu pecari), to investigate the effects of climate and landscape modifications on its distribution, which has been drastically reduced in Brazil. We used 318 primary records of WLP to derive habitat suitability maps across Brazil. Our models included bioclimatic, topographic, landscape, and human influence predictors in two modelling approaches. Models including all categories of predictors obtained the highest predictive ability and showed prevalence of suitable areas in forested regions of the country, covering 49% of the Brazilian territory. Filtering out small forest fragments (<2050 ha) reduced the suitable area by 5%, with a further reduction of 4% that was caused by deforestation until 2020, therefore until 2020, the species has suffered a reduction of ~60% from its historical range in Brazil. Of the 40% of the Brazilian territory suitable to WLP, only 12% are protected. In the Atlantic Forest, only half of all protected areas have suitable habitat for WLP and even less in Pantanal (44%), Cerrado (14%) and Caatinga (7%). In a second modelling approach, mapping the areas with suitable climate and those with suitable landscapes separately, allowed us to identify four categories of conservation values, and showed that only 17% of the Brazilian territory has both high landscape and climatic suitability for WLP. Our models can help with complementary conservation management strategies and actions that could be essential in slowing down and possibly reversing current trends of population and geographic range reductions for te species, thereby averting a possible future collapse of forest ecosystem functioning in the Neotropical region
    • 

    corecore