347 research outputs found

    Numerical Investigation of Ion Transport in the MOMA Ion Mass Spectrometer

    Get PDF
    The Mars Organic Molecule Analyzer (MOMA) is a miniature ion trap mass spectrometer designed for the upcoming ExoMars Rover mission. The spectrometer uses laser desorption to ionize a Martian soil sample within an instrument internal clean zone maintained at ambient Martian pressure. A high-speed aperture valve transiently opens to allow ionized constituents, along with the ambient gas, to enter a vacuum cavity containing a linear ion trap mass spectrometer. The ambient clean zone and the vacuum cavity are connected via a few centimeter long aperture valve ion guide tube. In this paper, we present results from a recently completed numerical investigation of ion transport from the ion source across the ion guide. Specifically, we focus on collisional coupling between ions and the neutral molecules flowing into the vacuum cavity. The simulation domain contains the ambient region, and we consider the variation in ion conductance with ambient pressure. We also analyze the impact of a fixed potential bias applied to the aperture valve. Simulations are performed with a two-dimensional axisymmetric PIC / DSMC code Starfish. Numerical results are compared to experimental data

    PP-Wave / CFT_2 Duality

    Full text link
    We investigate the pp-wave limit of the AdS_3\times S^3\times K3 compactification of Type IIB string theory from the point of view of the dual Sym_N(K3) CFT. It is proposed that a fundamental string in this pp-wave geometry is dual to the c=6 effective string of the Sym_N(K3) CFT, with the string bits of the latter being composed of twist operators. The massive fundamental string oscillators correspond to certain twisted Virasoro generators in the effective string. It is shown that both the ground states and the genus expansion parameter (at least in the orbifold limit of the CFT) coincide. Surprisingly the latter scales like J^2/N rather than the J^4/N^2 which might have been expected. We demonstrate a leading-order agreement between the pp-wave and CFT particle spectra. For a degenerate special case (one NS 5-brane) an intriguing complete agreement is found.Comment: JHEP3 LaTeX, 20 pages; discussion of WZW levels clarified, reference adde

    Becoming the Synthi-Fou: Stockhausen and the new keyboardism

    Get PDF
    Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG geförderten) Allianz- bzw. Nationallizenz frei zugänglich.This publication is with permission of the rights owner freely accessible due to an Alliance licence and a national licence (funded by the DFG, German Research Foundation) respectively.Karlheinz Stockhausen embraced the potential of electronic music to generate new timbres and acoustic typologies early in his career. After first experimenting with magnetic tape in works such as Gesang der Jünglinge (1955) and Kontakte (1958–60), he later embraced other synthesis technologies for the production of large-scale spatial electro-acoustic works such as Sirius (1970) and Oktophonie (1990–91). His interest in technological advances in sound design and sound diffusion also managed to penetrate his highly evolved Klavierstücke

    Approximate and exact nodes of fermionic wavefunctions: coordinate transformations and topologies

    Full text link
    A study of fermion nodes for spin-polarized states of a few-electron ions and molecules with s,p,ds,p,d one-particle orbitals is presented. We find exact nodes for some cases of two electron atomic and molecular states and also the first exact node for the three-electron atomic system in 4S(p3)^4S(p^3) state using appropriate coordinate maps and wavefunction symmetries. We analyze the cases of nodes for larger number of electrons in the Hartree-Fock approximation and for some cases we find transformations for projecting the high-dimensional node manifolds into 3D space. The node topologies and other properties are studied using these projections. We also propose a general coordinate transformation as an extension of Feynman-Cohen backflow coordinates to both simplify the nodal description and as a new variational freedom for quantum Monte Carlo trial wavefunctions.Comment: 7 pages, 7 figure

    Cubic Twistorial String Field Theory

    Full text link
    Witten has recently proposed a string theory in twistor space whose D-instanton contributions are conjectured to compute N=4 super-Yang-Mills scattering amplitudes. An alternative string theory in twistor space was then proposed whose open string tree amplitudes reproduce the D-instanton computations of maximal degree in Witten's model. In this paper, a cubic open string field theory action is constructed for this alternative string in twistor space, and is shown to be invariant under parity transformations which exchange MHV and googly amplitudes. Since the string field theory action is gauge-invariant and reproduces the correct cubic super-Yang-Mills interactions, it provides strong support for the conjecture that the string theory correctly computes N-point super-Yang-Mills tree amplitudes.Comment: 19+1 pages, 4+1 EPS figures, JHEP3 LaTeX; v2: minor corrections, references added; v3: the final version published in JHEP with a new footnote on the d=0 on-shell contributio

    DiVinE-CUDA - A Tool for GPU Accelerated LTL Model Checking

    Full text link
    In this paper we present a tool that performs CUDA accelerated LTL Model Checking. The tool exploits parallel algorithm MAP adjusted to the NVIDIA CUDA architecture in order to efficiently detect the presence of accepting cycles in a directed graph. Accepting cycle detection is the core algorithmic procedure in automata-based LTL Model Checking. We demonstrate that the tool outperforms non-accelerated version of the algorithm and we discuss where the limits of the tool are and what we intend to do in the future to avoid them

    QMCPACK: Advances in the development, efficiency, and application of auxiliary field and real-space variational and diffusion Quantum Monte Carlo

    Get PDF
    We review recent advances in the capabilities of the open source ab initio Quantum Monte Carlo (QMC) package QMCPACK and the workflow tool Nexus used for greater efficiency and reproducibility. The auxiliary field QMC (AFQMC) implementation has been greatly expanded to include k-point symmetries, tensor-hypercontraction, and accelerated graphical processing unit (GPU) support. These scaling and memory reductions greatly increase the number of orbitals that can practically be included in AFQMC calculations, increasing accuracy. Advances in real space methods include techniques for accurate computation of band gaps and for systematically improving the nodal surface of ground state wavefunctions. Results of these calculations can be used to validate application of more approximate electronic structure methods including GW and density functional based techniques. To provide an improved foundation for these calculations we utilize a new set of correlation-consistent effective core potentials (pseudopotentials) that are more accurate than previous sets; these can also be applied in quantum-chemical and other many-body applications, not only QMC. These advances increase the efficiency, accuracy, and range of properties that can be studied in both molecules and materials with QMC and QMCPACK

    Efficient Parallel Statistical Model Checking of Biochemical Networks

    Full text link
    We consider the problem of verifying stochastic models of biochemical networks against behavioral properties expressed in temporal logic terms. Exact probabilistic verification approaches such as, for example, CSL/PCTL model checking, are undermined by a huge computational demand which rule them out for most real case studies. Less demanding approaches, such as statistical model checking, estimate the likelihood that a property is satisfied by sampling executions out of the stochastic model. We propose a methodology for efficiently estimating the likelihood that a LTL property P holds of a stochastic model of a biochemical network. As with other statistical verification techniques, the methodology we propose uses a stochastic simulation algorithm for generating execution samples, however there are three key aspects that improve the efficiency: first, the sample generation is driven by on-the-fly verification of P which results in optimal overall simulation time. Second, the confidence interval estimation for the probability of P to hold is based on an efficient variant of the Wilson method which ensures a faster convergence. Third, the whole methodology is designed according to a parallel fashion and a prototype software tool has been implemented that performs the sampling/verification process in parallel over an HPC architecture

    Electron correlation in C_(4N+2) carbon rings: aromatic vs. dimerized structures

    Full text link
    The electronic structure of C_(4N+2) carbon rings exhibits competing many-body effects of Huckel aromaticity, second-order Jahn-Teller and Peierls instability at large sizes. This leads to possible ground state structures with aromatic, bond angle or bond length alternated geometry. Highly accurate quantum Monte Carlo results indicate the existence of a crossover between C_10 and C_14 from bond angle to bond length alternation. The aromatic isomer is always a transition state. The driving mechanism is the second-order Jahn-Teller effect which keeps the gap open at all sizes.Comment: Submitted for publication: 4 pages, 3 figures. Corrected figure

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal
    • …
    corecore