40 research outputs found

    The role of context in elucidating drivers of animal movement

    Get PDF
    Despite its consequences for ecological processes and population dynamics, intra-specific variability is frequently overlooked in animal movement studies. Consequently, the necessary resolution to reveal drivers of individual movement decisions is often lost as animal movement data are aggregated to infer average or population patterns. Thus, an empirical understanding of why a given movement pattern occurs remains patchy for many taxa, especially in marine systems. Nonetheless, movement is often rationalized as being driven by basic life history requirements, such as acquiring energy (feeding), reproduction, predator-avoidance, and remaining in suitable environmental conditions. However, these life history requirements are central to every individual within a species and thus do not sufficiently account for the high intra-specific variability in movement behavior and hence fail to fully explain the occurrence of multiple movement strategies within a species. Animal movement appears highly context dependent as, for example, within the same location, the behavior of both resident and migratory individuals is driven by life history requirements, such as feeding or reproduction, however different movement strategies are utilized to fulfill them. A systematic taxa-wide approach that, instead of averaging population patterns, incorporates and utilizes intra-specific variability to enable predictions as to which movement patterns can be expected under a certain context, is needed. Here, we use intra-specific variability in elasmobranchs as a case study to introduce a stepwise approach for studying animal movement drivers that is based on a context-dependence framework. We examine relevant literature to illustrate how this context-focused approach can aid in reliably identifying drivers of a specific movement pattern. Ultimately, incorporating behavioral variability in the study of movement drivers can assist in making predictions about behavioral responses to environmental change, overcoming tagging biases, and establishing more efficient conservation measures

    Embryonic malformations in an offspring of the shortnose guitarfish

    Get PDF
    Embryonic malformations can be a result of exposure toxic substances (pollution), lack of nutrients, physical restraint, genetic disorders, or infections and diseases. Such malformations can be classified according to severity and offspring survival outside the uterus. Moreover, abnormalities are normally restricted to a small portion of the litter, mostly, to only one embryo. Here, we report a case of congenital malformation dominance in an offspring of the shortnose guitarfish and compare it with other abnormalities commonly reported in batoids in addition to discussing the possible causes involved in the observed deformities

    Embryonic malformations in an offspring of the shortnose guitarfish

    Get PDF
    Embryonic malformations can be a result of exposure toxic substances (pollution), lack of nutrients, physical restraint, genetic disorders, or infections and diseases. Such malformations can be classified according to severity and offspring survival outside the uterus. Moreover, abnormalities are normally restricted to a small portion of the litter, mostly, to only one embryo. Here, we report a case of congenital malformation dominance in an offspring of the shortnose guitarfish and compare it with other abnormalities commonly reported in batoids in addition to discussing the possible causes involved in the observed deformities

    Trophic ecology shapes spatial ecology of two sympatric predators, the great hammerhead shark (Sphyrna mokarran) and bull shark (Carcharhinus leucas)

    Get PDF
    Information on how the trophic ecology of predators shapes their movement patterns and space-use is fundamental to understanding ecological processes across organisational levels. Despite this, studies combining spatial and trophic ecology to determine how prey preference and/or resource availability shape space use are lacking in marine predators as these can occur at low density and are often difficult to track over extended periods. Furthermore, many exhibit behavioural variability within species and among closely related, sympatric species adding further complexity. We applied a context-focused, multi-method approach to the understudied great hammerhead shark (Sphyrna mokarran) to test if movement and home ranges relate to prey preference and availability. Movement data from satellite and acoustic telemetry in Queensland, Australia, were combined with stable-isotope analysis, drone surveys, and videos of hunting behaviour. Limited dispersal, and small home ranges in S. mokarran were linked to trophic specialisation on stingray prey. Drone surveys and videos showed predation events on stingrays and demonstrated high, year-round availability of this prey in shallow, inshore habitats, which may allow the majority of S. mokarran to remain resident. This affinity for inshore habitats suggests that critical life-history requirements are performed over local or regional scales, although some larger movements were evident. These results were interpreted in comparison to the well-studied bull shark (Carcharhinus leucas), which showed reliance on pelagic food webs. Carcharhinus leucas had high individual variability in movement, with both large-scale migrations and residency. This could indicate that only some individuals are locally sustained on dynamic, pelagic food webs, while others undergo large-scale excursions over distant habitats. The specialised foraging of S. mokarran indicates they play an apex predator role in shallow, inshore habitats, potentially shaping space-use, and foraging behaviour of batoids. As inshore habitats are disproportionately affected by anthropogenic stressors, S. mokarran’s trophic specialisation and limited demographic connectivity may make the species particularly vulnerable to anthropogenic threats

    Scientific response to a cluster of shark bites

    Get PDF
    1. Shark bites are of high public concern globally. Information on shark occurrence and behaviour, and of the effects of human behaviours, can help understand the drivers of shark-human interactions. In Australia, a number of shark bite clusters occurred over the last decade. One of these took place in Cid Harbour the Whitsundays, Queensland, a region for which little was known about the shark community. Here, we describe and evaluate the research in response to that shark bite cluster. 2. Fishing methods, acoustic and satellite tracking, and baited remote underwater video cameras (BRUVs) were used to identify the shark species using Cid Harbour, estimate relative abundance, and describe habitat use and residency. Side-scan sonar and BRUVs were also used to assess prey availability. Recreational users were surveyed to understand human behaviour and their awareness and perceptions of ‘Shark Smart’ behaviours. This allowed shark occurrence and behaviour to be interpreted in the context of human behaviours in the Harbour. 3. Eleven shark species were identified. Relative abundance was not unusually high, and residency in Cid Harbour was typically low. For example, 79% of acoustically tagged sharks visited the harbour on <10% days at liberty. Shark prey was available year-round. Notably, anchored boats regularly conduct activities that can attract sharks (dumping food scraps, provisioning and cleaning fish). 4. Alone, the methods used in this study had variable success, but combined they provided a large amount of complementary information. Including a social science component in the research response to the shark bite incidents allowed for a more holistic understanding of the Cid Harbour bite incidents. 5. This study did not identify anything unusual about the shark community that could have contributed to the Cid Harbour shark bite cluster. However, the three incidents involved people bitten almost instantly after entering the water, which is unusual and suggests that feeding/attracting sharks to boats could have been a contributor and also that any species capable of biting humans could have been responsible. 6. The eradication of activities that attract sharks to areas where people enter the water may reduce shark bite risk

    Latest Developments in Metalloenzyme Design and Repurposing

    Get PDF
    In the past decade, artificial metalloenzymes (AMEs) have emerged as attractive alternatives to more traditional homogeneous catalysts and enzymes. This microreview presents a selection of recent achievements in the design of such hybrid catalysts. These include artificial zinc hydrolases and metathesases, the heme-protein repurposing for C–H, N–H, and S–H insertion reactions, novel light-driven redox hybrid catalysts, novel scaffold proteins, and metallocofactor anchoring techniques and metalloenzyme models

    Genome-wide association analyses identify new Brugada syndrome risk loci and highlight a new mechanism of sodium channel regulation in disease susceptibility.

    Get PDF
    Brugada syndrome (BrS) is a cardiac arrhythmia disorder associated with sudden death in young adults. With the exception of SCN5A, encoding the cardiac sodium channel Na1.5, susceptibility genes remain largely unknown. Here we performed a genome-wide association meta-analysis comprising 2,820 unrelated cases with BrS and 10,001 controls, and identified 21 association signals at 12 loci (10 new). Single nucleotide polymorphism (SNP)-heritability estimates indicate a strong polygenic influence. Polygenic risk score analyses based on the 21 susceptibility variants demonstrate varying cumulative contribution of common risk alleles among different patient subgroups, as well as genetic associations with cardiac electrical traits and disorders in the general population. The predominance of cardiac transcription factor loci indicates that transcriptional regulation is a key feature of BrS pathogenesis. Furthermore, functional studies conducted on MAPRE2, encoding the microtubule plus-end binding protein EB2, point to microtubule-related trafficking effects on Na1.5 expression as a new underlying molecular mechanism. Taken together, these findings broaden our understanding of the genetic architecture of BrS and provide new insights into its molecular underpinnings

    The role of context in elucidating drivers of animal movement

    Get PDF
    Abstract Despite its consequences for ecological processes and population dynamics, intra‐specific variability is frequently overlooked in animal movement studies. Consequently, the necessary resolution to reveal drivers of individual movement decisions is often lost as animal movement data are aggregated to infer average or population patterns. Thus, an empirical understanding of why a given movement pattern occurs remains patchy for many taxa, especially in marine systems. Nonetheless, movement is often rationalized as being driven by basic life history requirements, such as acquiring energy (feeding), reproduction, predator‐avoidance, and remaining in suitable environmental conditions. However, these life history requirements are central to every individual within a species and thus do not sufficiently account for the high intra‐specific variability in movement behavior and hence fail to fully explain the occurrence of multiple movement strategies within a species. Animal movement appears highly context dependent as, for example, within the same location, the behavior of both resident and migratory individuals is driven by life history requirements, such as feeding or reproduction, however different movement strategies are utilized to fulfill them. A systematic taxa‐wide approach that, instead of averaging population patterns, incorporates and utilizes intra‐specific variability to enable predictions as to which movement patterns can be expected under a certain context, is needed. Here, we use intra‐specific variability in elasmobranchs as a case study to introduce a stepwise approach for studying animal movement drivers that is based on a context‐dependence framework. We examine relevant literature to illustrate how this context‐focused approach can aid in reliably identifying drivers of a specific movement pattern. Ultimately, incorporating behavioral variability in the study of movement drivers can assist in making predictions about behavioral responses to environmental change, overcoming tagging biases, and establishing more efficient conservation measures
    corecore