58 research outputs found

    Amendement des sols, influence des fertilisants pour l’amélioration de la culture de Glycine max (L) Merril (soja)

    Get PDF
    Le Glycine max (L) Merril (soja) est une légumineuse cultivée pour ses graines riches en protéines, en matières grasses et minérales. Le soja comprend un grand nombre de variétés caractérisées par le poids et la hauteur des plantes, la forme et la largeur des feuilles, la couleur des fleurs, la forme et la couleur des graines. Les variétés à graines jaunes ou vertes sont en général plus riches en huile que celles à graines foncées. Nous avons utilisé dans cette expérimentation la variété Palmento provenant de Mvuanzi dans la province du Bas- Congo. Les traitements TD (sols + Tithonia diversifolia) ont donné les meilleurs résultats notamment sur la taille (en cm) au 56è jour de semis, avec une moyenne de : 41,0 ; le diamètre au collet (en mm) : 5,0 ; le nombre des gousses récoltées : 37,0 ; le nombre des graines récoltées : 90,0 ; le diamètre des graines récoltées (en mm) :5,0 ; la circonférence des graines récoltées (en mm) : 14,0 ; le rendement phytomasse : 19,0 ; le nombre des nodules récoltés : 17,0 l’utilisation des engrais verts comme matière organique retourne au sol les minéraux utiles pour la culture des plantes légumineuses, ces minerais entrent dans le cycle biogéochimique. L’agriculture biologique suppose la connaissance des espèces capables de fournir au sol l’azote minéral en un temps relativement court. C’est le cas de Tihonia diversifolia utilisé dans cette expérimentation.Mots clés : Amendement, Glycine max (L) Merril, Variétés, Mvuanzi, Traitements

    1-Methyl-4H-3,1-benzoxazine-2,4(1H)dione

    Get PDF
    In its crystal structure, the title compound, C9H7NO3, forms π-stacked dimers, with a centroid–centroid distance of 3.475 (5) Å between the benzenoid and the 2,4 dicarbonyl oxazine rings. These dimers then form staircase-like linear chains through further π-stacking between the benzenoid rings [centroid–centroid distance of 3.761 (2) Å]. The methyl-H atoms are disordered due to rotation about the C—N bond and were modeled with equal occupancy

    The Bi-Loop, a new general four-stranded DNA motif

    Get PDF
    The crystal structure of the cyclic octanucleotide d contains two independent molecules that form a novel quadruplex by means of intermolecular Watson-Crick A.T pairs and base stacking. A virtually identical quadruplex composed of G.C pairs was found by earlier x-ray analysis of the linear heptamer d(GCATGCT), when the DNA was looped in the crystal. The close correspondence between these two structures of markedly dissimilar oligonucleotides suggests that they are both examples of a previously unrecognized motif. Their nucleotide sequences have little in common except for two separated 5'-purine-pyrimidine dinucleotides forming the quadruplex, and by implication these so-called 'bi-loops' could occur widely in natural DNA. Such structures provide a mechanism for noncovalent linking of polynucleotides in vivo. Their capacity to associate by base stacking, demonstrated in the crystal structure of d(GCATGCT), creates a compact molecular framework made up of four DNA chains within which strand exchange could take place

    Probing the dark matter issue in f(R)-gravity via gravitational lensing

    Full text link
    For a general class of analytic f(R)-gravity theories, we discuss the weak field limit in view of gravitational lensing. Though an additional Yukawa term in the gravitational potential modifies dynamics with respect to the standard Newtonian limit of General Relativity, the motion of massless particles results unaffected thanks to suitable cancellations in the post-Newtonian limit. Thus, all the lensing observables are equal to the ones known from General Relativity. Since f(R)-gravity is claimed, among other things, to be a possible solution to overcome for the need of dark matter in virialized systems, we discuss the impact of our results on the dynamical and gravitational lensing analyses. In this framework, dynamics could, in principle, be able to reproduce the astrophysical observations without recurring to dark matter, but in the case of gravitational lensing we find that dark matter is an unavoidable ingredient. Another important implication is that gravitational lensing, in the post-Newtonian limit, is not able to constrain these extended theories, since their predictions do not differ from General Relativity.Comment: 7 pages, accepted for publication in EPJ

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells
    corecore