26 research outputs found

    Introduction:The novel as theory

    Get PDF

    Parachute Compartment Drop Test Vehicle for Testing the Crew Exploration Vehicle's Parachute Assembly System

    Get PDF
    Though getting astronauts safely into orbit and beyond has long been one of NASA?s chief goals, their safe return has always been equally as important. The Crew Exploration Vehicle?s (CEV) Parachute Assembly System (CPAS) is designed to safely return astronauts to Earth on the next-generation manned spacecraft Orion. As one means for validating this system?s requirements and testing its functionality, a test article known as the Parachute Compartment Drop Test Vehicle (PC-DTV) will carry a fully-loaded yet truncated CPAS Parachute Compartment (PC) in a series of drop tests. Two aerodynamic profiles for the PC-DTV currently exist, though both share the same interior structure, and both have an Orion-representative weight of 20,800 lbf. Two extraction methods have been developed as well. The first (Cradle Monorail System 2 - CMS2) uses a sliding rail technique to release the PC-DTV midair, and the second (Modified DTV Sled; MDS) features a much less constrained separation method though slightly more complex. The decision as to which aerodynamic profile and extraction method to use is still not finalized. Additional CFD and stress analysis must be undertaken in order to determine the more desirable options, though at present the "boat tail" profile and the CMS2 extraction method seem to be the favored options in their respective categories. Fabrication of the PC-DTV and the selected extraction sled is set to begin in early October 2010 with an anticipated first drop test in mid-March 2011

    Anomaly Detection in Autonomous Deep-Space Navigation via Filter Bank Gating Networks

    No full text
    This study investigates methods for autonomous navigation of a deep-space spacecraft where one-way radiometric and on-board optical information are fused to create a fully informed state estimate. The specific focus is on using filter bank methods (i.e., Multiple Model Estimation [MME] and Mixture of Experts [MoE]) to detect when measurement and/or dynamical mis-modeling occurs. We develop a new χ2-based gating network for a filter bank that may be used to identify poorly performing filters (i.e., those with low weights), which may be used as a signal for mis-modeling in the system. In addition to defining and deriving this new weighting scheme, numerical simulations based on NASA’s InSight mission demonstrate this new algorithm’s performance with and without measurement and dynamical mis-modeling present
    corecore