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The Big Sky Theory once posited that the volume of Earth’s orbital environment is so large

that the chance of a collision ever occurring is effectively negligible. However, since 1996 six

accidental collisions have been recorded in orbit, contributing thousands of trackable debris objects

to this environment and possibly hundreds of thousands to millions more that are too small to

track with current assets. Much of this debris persists to today. Access to this environment

has become critical in our society, thus we need methods to ensure safe and continued access

to it. Part of ensuring this is obtaining better information on its dynamics and its population.

This research focuses on developing an automated approach to detecting and understanding the

presence of mismodeled dynamics for orbital applications in order to provide more information

on the objects in Earth orbit. We develop an algorithm called the Adaptive Optimal Control

Based Estimator, which automatically tracks a target given observations, detects the presence

of dynamic uncertainty, and reconstructs that mismodeling as an optimal control policy. These

control policies may then be used to better understand the source of the mismodeling. Outside of a

specific astrodynamics application, this algorithm attempts to fulfill a specific hole in the existing

literature: automated, real-time estimation in dynamically mismodeled systems with data sparse

and non-cooperative observation sets while obtaining information about the mismodeling. The

development of this algorithm is shown, and several astrodynamics-based simulations demonstrate

its ability to automatically detect and reconstruct dynamic mismodeling while maintaining tracking

of the target.
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Chapter 1

Introduction

In this chapter we introduce the central topic of this research - the Optimal Control Based

Estimator (OCBE). The estimator incorporates an optimal control criterion into an estimator, such

that it reconstructs mismodeled dynamics as an optimal control policy. These estimated control

policies may be analyzed to determine the presence of dynamic mismodeling and characterize the

mismodeling. This chapter focuses on setting up the context for the OCBE by illuminating the

motivation behind this research, discussing what hole it fills within the existing literature, and

outlining how this thesis will present this research. We start with an overview of Space Situational

Awareness (SSA), which informs the discussion of the motivation behind this work. Next we define

the research problem, and then discuss where that research fits in the existing literature. Finally,

we call out the main contributions of this research, define the previous publications associated with

this research, and finish with an outline of how the reset of this thesis is organized.

1.1 History and Development of Space Situational Awareness

Before October 4, 1957, Earth’s orbital environment was untouched by humans. It was

composed of sparse amounts of natural bodies like meteoroids and a lot of empty space. This all

changed with the launch of Sputnik-1 by the Soviet Union, which triggered the Cold War space race

with the United States. This led to a new era for mankind - The Space Age. 58 years later, we are

currently tracking in Earth Orbit 16,925 objects greater than 10 cm in diameter, with upwards of

90% of those objects being pieces of uncontrolled, manmade debris [64]. Though we are currently
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unable to accurately track objects smaller than this cutoff, we are able to estimate that the debris

problem only gets worse with around 500,000 objects between 1 cm and 10 cm in size, and hundreds

of millions of other objects below this size cutoff [69]. These objects in orbit are a testament to

some of mankind’s greatest triumphs as well as our many failures.

Our successes in space have created a society that is dependent on continued access to Earth

orbit, but the failures that led to debris accumulation are threatening this access for manned and

robotic missions alike. This has not always been the case. In the early years of space race, there were

only two nations launching satellites into space: the United States and the Soviet Union. Less than

4 years after the first manmade satellite was put in Earth orbit, the first breakup event occurred -

increasing the population of objects in Earth’s orbit by over 400%. The United States’s Transit 4A

R/B spacecraft experienced a propulsion failure, which contributed 296 pieces of trackable debris

(of which 176 remain as of 2011) [32, 49]. Many more breakup events would follow - not all of

which were accidental.

While propulsion-based breakups are the most common type of breakup, intentional destruc-

tion of payloads have created a large portion of the debris population. Between 1964 and 2007, 56

satellites were intentionally destroyed in orbit by three different nations: 51 satellites by Russia /

Soviet Union, 4 satellites by the United States, and 1 by China [32]. Not much data is available

on the reasons for why all of the Soviet Union’s satellites were intentionally destroyed, but the rea-

sons varied from a payload failure to intentional destruction through testing of their Anti-Satellite

(ASAT) weapons program [21]. These self destructions were usually initiated at low altitudes, so

much of the resulting debris (numbering as much as 248 trackable pieces for a single destruction)

quickly reentered the atmosphere - though, those that were initiated at higher altitudes still have

remaining pieces of debris in orbit almost forty years later. The United States intentionally de-

stroyed one satellite at a low altitude to test structural loading limits in orbit (AS-203), and the

other three were demonstrations of ASAT Weapons - the trackable debris from which persisted

until 2002 [21]. The U.S. destroyed an additional satellite via ASAT in 2008 in order to prevent the

spread of hydrazine on the ground as the failed satellite began to reenter, but the destruction took
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place at a low altitude providing only debris with a short lifespan [51]. Though China intentionally

destroyed the fewest number of satellites, they have created the biggest problem in terms of debris.

Their destruction of the Fengyun 1-C satellite via an ASAT weapon has contributed over 3,312

pieces of debris greater than 10 cm in size (with upwards of 150,000 smaller pieces) to a popular

orbital altitude where debris does not quickly reenter the atmosphere [48]. It remains the most

orbital debris-creating event in history.

As the debris population in Earth orbit has evolved, so too has our attitude toward it. In

the early days of space-faring, the general approach to space debris and payloads in general was

the “Big Sky Theory” [68]. This approach (borrowed from the field of aviation), basically surmised

that the total volume of the inhabited sky is so large that the probability of any chance collision

is essentially negligible. This theory was disproved in 1996 when the French Cerise spacecraft was

hit by a piece of space debris [32]. This was just the first in a series of six accidental collisions that

have happened to date. The most significant of these events was the collision of Iridium 33 (an

active U.S. payload) and Cosmos 2251 (a decommissioned Russian payload) on February 10, 2009.

This event led to the creation of 2,201 pieces of debris larger than 10 cm in size with many more

pieces that are smaller, the majority of which remain in orbit to date [36]. This event effectively

ended any remaining hope in the Big Sky Theory and brought Space Situational Awareness (SSA)

to the forefront.

SSA focuses on better understanding Earth’s orbital environment and its population with

one of its chief aims being the mitigation of the orbital debris problem. Better understanding this

environment includes providing higher fidelity and more accurate dynamical models, more robust

and precise tracking algorithms, and more reliable and computationally efficient algorithms for

trajectory and uncertainty propagation. The algorithms may be combined to better understand

the past, present, and future motions of all objects in orbit as well as their coupled motions. In

the end, this allows for more accurate prediction of collisions - one of the central goals of SSA.

The success of research in SSA is important to continued access to earth orbit, which is

vital to today’s society. If the orbital debris problem is left unchecked, then eventually runaway
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collisions between debris and active payloads could make this vitally important environment too

costly for even robotic missions. We have already seen these effects with the destruction of Russia’s

BLITS satellite through a collision with a piece of debris that is widely believed to have come

from the destruction of Fengyun 1-C [37]. By addressing this issue early enough the problem is

far more manageable, and it may even be solvable given sufficient time, attention, and resources.

Aiding this cause is an upgrade to the United State’s sensing abilities through the upcoming S-

band Space Fence as well as similar upgrades in Russia and Europe [88]. This new suite of sensors

uses shorter wavelengths for observation, which will allow us to track objects below the current

10 cm cutoff. Estimates put the fence’s capabilities at tracking 200,000 objects with 1.5 million

observations a day [23]. This sudden flood of information will present its own challenges, but by

focusing on computationally efficient algorithms the SSA community will be able to more accurately

characterize the debris problem and avoid the problems associated with rising population in Earth

orbit.

1.2 Overview of Research

The effects of the debris problem in Earth orbit have already been felt through the six

incidental collisions that have occurred so far and the countless number of propellant-draining

debris avoidance maneuvers that active payloads have had to execute. These events have motivated

a stronger interest in SSA as a means to mitigate the problems associated with rising population in

Earth orbit so that this invaluable environment (and areas beyond) can remain open to mankind

for all generations to come.

SSA is a complex and dense field that no single research project can cover. This research

specifically focuses on the tracking problem within SSA - more specifically, estimation in dynami-

cally mismodeled systems. Earth’s orbital environment is fraught with sources of dynamical mis-

modeling due to uncertainties in several different perturbations. These mismodelings can include

both natural dynamics and controlled dynamics if observing an active payload. While the domi-

nant gravitational accelerations are well understood object-dependent natural dynamics are often
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poorly modeled. The most dominant object-dependent perturbations are atmospheric drag and

solar radiation pressure. For both, the natural mechanisms are not fully understood due to the

complex solar dynamics, and the addition of vehicle mismodeling introduces even more error. SSA

surveys are typically non-cooperative meaning the measurements are obtained passively (i.e., with-

out any links with the observed object). This makes object identification difficult at times, which

only exacerbates dynamic mismodeling since complicated object-dependent dynamical models are

not possible when dealing with an unidentified object. When the object being observed is an ac-

tive payload the situation is complicated further due to the possibility of active maneuvers being

performed. Without having a priori knowledge of the vehicle’s actuated capabilities the entire

maneuver is completely unknown to the observer.

Beyond dynamic mismodeling, estimation in SSA is further complicated by the data sparse

nature of the observations. Given the large number of objects in orbit and the limited sensing

resources the number of dedicated observations per object is often quite small. Generally several

orbital periods can pass with no observation - this can extend to days or weeks. As such, the

information content is quite low, thus estimation methods need to be robust to this.

Putting this all together, the larger problem this research seeks to address is estimation in

dynamically mismodeled systems with data sparse and non-cooperative observation while obtaining

information about any mismodeling. We specifically focus on application to astrodynamics in a

SSA context, but the algorithms are written generally to promote application to any type of system.

This research goal is formally summed up into the following thesis statement:

Combining an optimal control criterion with the pieces of information available
to a sequential state estimator, an estimation method that is robust to dynamic
mismodeling, data sparse information, and non-cooperative observation may be
obtained. This method simultaneously outputs state and control estimates such
that the state trajectory is continuous across the observation gap while the con-
trol estimates provide a representation of the mismodeling in the system. These
resulting estimates may be used to reveal the presence of mismodeled dynamics,
provide time-series representations of those maneuvers, and estimate underlying
mismodeled natural dynamics.

The algorithm developed to address these research goals is called the Optimal Control Based
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Estimator (OCBE). It is a state estimator infused with an optimal control process that is meant to

replicate the effects of dynamic mismodeling. These control policies may then be analyzed to iden-

tify the presence of mismodeling, characterize the mismodeling, and reconstruct the mismodeling.

This thesis will focus on developing this algorithm, examining its properties, and demonstrating

its utility through application to sample astrodynamics-based tracking simulations. In the next

subsection we will focus on what work has been done to address aspects of this research statement

as well as address where the OCBE fits in with the larger collection of existing literature.

1.3 Previous Work

In this section, a comprehensive examination of the existing literature related to this research

is examined. It starts with an overview of estimation theory as a whole and how that has been

specifically applied to orbit determination. Next, there is an overview of existing methods for

maneuver detection and reconstruction as applied to astrodynamics as well as other applications.

Finally, there is an overview of a specific method called control distance metrics. These form the

basis of the Optimal Control Based Estimator, thus we focus on them to provide insight on the

foundations of the research discussed in this paper.

1.3.1 Estimation Theory and Orbit Determination

The field of Estimation Theory focuses on how to take measurements of a system that are

infused with sensor error, and turn them into optimal parameter and/or state estimates for a given

system. Optimal in this sense means the estimate minimizes or maximizes some meaningful objec-

tive. The topic is central to both science and engineering since perfect observations are impossible

to obtain, and our knowledge of systems is completely based on our ability to observe them. Meth-

ods must exploit statistics to obtain results that minimize observation error and other sources of

error such that the estimates approach truth with the continual addition of new information.

Optimal estimation is generally seen to have begun with the advent of Least Squares. Least

squares is a statistical estimation method that estimates states or system parameters while mini-
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mizing the summed squares of the measurement residuals. In the late 18th to early 19th century

the method was developed independently by Karl Friedrich Gauss [19] and Adrien-Marie Legendre

[44]. There is much debate on who developed the method first. Legendre published it in 1805

while Gauss published in 1809, but Gauss argued he had been using the method since 1795 and

discussed it before 1805 with several other astronomers. His claim is further supported by several

notations made in earlier work, and his results from a study of the French Meridian Arc problem

in 1799 [72]. Additionally, an American named Robert Adrain published the method in 1808 as

applied to surveying problems [2], though it is possible it was influenced by Legendre’s work [72].

In general, it is believed that Gauss developed the method and provided the most formal statistical

presentation of it, but it was Legendre who popularized the method.

The next leap in statistical methods for estimation was the work of Thomas Bayes [8]. Bayes’

rule (also called inverse probability) deals with conditional probability saying that the probability of

an estimate conditioned on measurements is proportional to the probability of the measurements

conditioned on the estimate. Essentially, it is a formal method for how to update belief when

incorporating new information. While Bayes’s paper was published well before Least Squares

(1763 versus 1805), the method was not well known until Laplace popularized it in his own works

in 1812 [38, 73]. This method has been adapted into what we call Bayesian estimators, and it is

widely applied today [83, 65, 86].

Though Bayesian estimators are widely used, they are not without their critics. Chief among

them is Ronald Fisher, who brought about another leap in estimation methods. Fisher argued

that Bayesian estimators were arbitrary because when you parametrize the estimate you obtain

contrary results [24]. He introduced his own method in 1912 [15], which was unaffected by this

parameterization issue. Over the next 10 years he would solidify his theory and formally name it the

Maximum Likelihood Estimator (MLE) [16, 5]. This method does not require inverse probability,

rather it chooses the estimate that maximizes the likelihood of the obtained measurements. For

linear systems where the noises are normally distributed the MLE and Bayesian estimate are

identical, since the mode and mean of a Gaussian distribution are identical. Only when the linear
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and Gaussian assumptions are invalidated do these estimators produce different results.

The next leap in estimation theory came from Rudolf Kalman in 1960, who treated sequential

state estimation in dynamical systems [34]. The Kalman Filter operates in linear, discrete, time-

invariant systems where measurements are processed as the come in, and they update the state

trajectory in a manner that minimizes the variance of the estimate, is unbiased, and may also be

shown to be a weighted least squares solution. There is much debate over who deserves credit for

this estimator, though. Research has found that Thorvald Thiele first derived an equivalent state

estimator in 1880 [39, 40]. His work seems to have gone unnoticed by English-speaking statisticians

due to a lack of communication during his time, which ironically mirrors his reluctance to cite his

references in his own work [31]. After Thiele, Peter Swerling provided the next development of

what would would become known as the Kalman Filter, focusing specifically on problems of Orbit

Determination [79]. Additionally, the work of Ruslan Stratonovich [75, 74, 76, 77] is a nonlinear

estimator that is actually a generalization of the Kalman Filter. After Kalman’s first paper formal-

izing the estimator, his subsequent work with Bucy formalized the approach for continuous time

systems [35].

The Kalman Filter was derived at a perfect time for application to space-based problems.

Right after its publication, Stanley Schmidt of NASA Ames Research Center invited Kalman out for

a visit [22]. It was here that both sides realized that this estimator was a perfect fit for navigation

of the Apollo missions, which had just recently been started. Schmidt’s group developed the

algorithm for application and along the way made the algorithm more robust, and one of the first

groups to develop and apply the Extended Kalman Filter (EKF) [67, 22]. The EKF is a non-optimal

implementation of the Kalman Filter to nonlinear systems, and has the problem of divergence if

the dynamics are mismodeled. Despite this, these algorithms have revolutionized navigation in the

aerospace industry as well as many other fields. They form the basis of what is known as Statistical

Orbit Determination - estimation theory applied to astrodynamics problems.

Since the original development of the Kalman Filter and the EKF in the 1960s for the

Apollo missions, improvements have been made that reflect the improved computational power of
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today. An improved nonlinear version of the Kalman Filter that retains its optimality known as

the Unscented Kalman Filter was developed in 1997 by Julier and Uhlmann [33]. This algorithm

nonlinearally propagates several points in the vicinity of the a priori state estimate in order to

capture higher order moments of the underlying probability distribution. The optimality it provides

is balanced against the increased amount of computational time and tuning it requires. An even

more nonlinear algorithm is the particle filter. This algorithm operates on a Monte Carlo-like

basis, where it propagates many samples of the state trajectory and provides an estimate that is

optimal in a Bayesian sense. The estimator had existed in several heuristic forms since the mid-

20th century, but it had not been formalized until Pierre Del Moral’s publication in 1996 [56]. This

method is computationally intense, so its application is often limited, unlike the Kalman Filter and

its variants.

The OCBE is a sequential estimator in the same vein as a Kalman Filter. It differs from the

Kalman Filter in that it is a nonlinear filter, it is derived from a least squares context, it segregates

a priori state and dynamic uncertainties, and it provides a means to compensate for mismodeled

dynamics and reconstruct them through estimated optimal control policies that are imbued within

the estimator. Its specific purpose is to address estimation in dynamically mismodeled systems,

which is not addressed in the algorithms listed in this section. We address that existing literature

in the next section.

1.3.2 Maneuver Detection and Reconstruction

Given that estimation in dynamically mismodeled systems is the focus of this thesis we

will now provide a focused review of methods to deal with dynamic mismodeling. Each of the

methods discussed in this section deal at least with one of the following fields: (1) identification of

mismodeled dynamics (i.e.,, maneuver detection), (2) compensation for mismodeled dynamics, and

(3) estimation of mismodeled dynamics (i.e,. maneuver characterization and reconstruction).

Typical methods for dealing with uncertain dynamics in the state estimation process include

adding process noise to the system, Dynamic Model Compensation (DMC), or appending dynam-
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ics parameters to the state vector [83, 30, 46]. Process noise [63], while effective at preventing

divergence due to mismodeling, only masks the problem. It provides no method for estimating

the mismodeling or detecting its presence, it does not have a strong physical significance, and the

uncertainty it injects in the system limits the accuracy of the state estimates. DMC requires a

significant amount of tuning, and though the functional form is significant in a statistical sense it

does not have a strong physical significance for arbitrary systems [29, 80]. Appending dynamics

parameters to the state can be an effective method for recovering dynamics, but it requires a known

model for those mismodeled dynamics.

Beyond these classical methods, the problems of dynamic mismodeling identification (maneu-

ver detection) and mismodeling estimation (maneuver characterization/reconstruction and natural

dynamics estimation) have been addressed for different systems. Generally, algorithms have been

developed for highly dynamical systems (e.g., missile tracking and guidance) that are data-rich (i.e.,

observations taken throughout a maneuver). Methods such as Bar-Shalom and Birmiwal’s Vari-

able Dimension Filter [7], Chan, Hu, and Plant’s Input Estimation Method [11], and Goff, Black,

and Beck’s variable dimension approach [20] directly append accelerations to the state vector for

estimation when a maneuver is detected through residuals, but such methods require observation

throughout a continuous maneuver. Patera’s space event detection method [57] focuses more on

quick events in an astrodynamics context, so it tends to neglect smaller maneuvers and natu-

ral dynamics mismodeling as well as being limited in application. Hill’s detection method [27],

though effective, is based solely on optical tracklets, which limits its application to certain tracking

problems. Lemmens and Krag [45] addressed maneuver detection for LEO orbits with a Two-Line-

Element-based method. Aaron [1] and Folcik, Cefola, and Abbot [18] addressed maneuver detection

for Geosynchronous (GEO) orbits with a method based on application of the Extended Semiana-

lytic Kalman Filter (ESKF). These three methods produce promising maneuver detection results

for astrodynamics applications, but they provide no information about the underlying maneuvers.

Aside from DMC and appending parameters to the state vector in Kalman filtering, a method for

estimating dynamics parameters is provided by Mandankan, Singla, Singh, and Scott [52]. This
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method relies on polynomial chaos. It provides both state and parameter estimates, but just like

other methods it requires a model for mismodeled perturbations and it does not have maneuver

detection properties. Each of the methods described does not fully address the problem of detecting

and estimating mismodeled dynamics in data-sparse systems. We seek an algorithm that will fully

address the entirety of this problem in as automatic a fashion as possible.

Estimation in mismodeled systems is known in some academic circles as System Identification.

This is a large field, with many treatments including the seminal work of Ljung [50]. While there

are many different methods within this larger field, system identification essentially uses a system’s

inputs and outputs and tries to identify the mechanism in between them - the system model (e.g.,

dynamical model). Examples of this method at work include Ahmed, Coppola, and Bernstein’s

inertia matrix identification method [4] where they develop an asymptotically stable tracking control

law that is completely robust to inertia matrix mismodeling, because it uses the control inputs and

the sensed outputs to reconstruct the inertia matrix. Similarly, Chandresekhar and Bernstein’s

acceleration identification method [12] addresses unknown system dynamics, but in this case it

constructs an acceleration based model that is observed with unknown biases. As with the previous

paper, his method requires both input and output information, and in general it requires that the

user exercises a degree of control over the system. This is not the case with SSA observation, thus

these types of methods (which characterize much of system identification) cannot be applied to the

central research topic covered in this thesis.

Not all system identification methods require direct knowledge of the inputs, though. Wang

and Haldar’s method [87] is identified as system identification with few observations and no input

information. While this is true with respect to other system identification techniques, the method

still requires too many observations to be applicable to SSA. Additionally, it seems too directed

toward structural problems, and it requires active observation rather than the type of relatively

“spotty” coverage typical in SSA. Brincker, Zhang, and Andersen [10] discuss a frequency based

system identification method that also does not require knowledge of the inputs. Rather, the method

focuses on identifying the modes of a system that indicate the natural dynamics of the system. This
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method does require much observation and it focuses exclusively on natural dynamics mismodeling,

thus it does not fully cover the research problem addressed here. In general, system identification

methods that do not require knowledge of the inputs are frequency based, and as such are not well

posed to the nonlinear state-space systems typical of SSA. Viberg [85] provides a review of existing

subspace-based system identification methods that are better adapted to state-space models, but

like other system identification methods these generally require a lot of observations and control

over the system. One of the most applicable system identification methods to an SSA-type problem

are methods like Stubberud and Kramer’s [78]. This method adaptively adjusts weights on a neural

network to continually adjust the dynamics in the system in a Kalman filter implementation. The

method still requires more than data-sparse observation, though, and it limits the maneuvers and

mismodeled dynamics to being represented by the polynomials in a neural network, which is not

always physically meaningful.

Another area of study that is adapted for estimation in dynamically mismodeled systems

is Multiple Model Estimation. This, like system identification, is a large field of study, but Li

and Jilkov provided a substantial review of the existing literature in 2005 [47]. Multiple model

estimation works by providing a bank of filters with different models in them, and then an estimate

is generated by combining the results in a way that illuminates what is the most likely model. One

multiple model based approach is Hanlon and Maybeck’s Multiple Model Adaptive Estimator [25],

which uses a bank of Kalman Filters each with a different dynamical model. The results from each

filter are combined in a manner to weight the solution toward the most likely model, such that the

method automatically adjusts to changing dynamics or failures in the system. Lee and Hwang’s

multiple model estimation based method [43] senses maneuver’s based on orbital element changes

using a series of user predefined maneuvers. It then determines which maneuver mode is most

likely. Multiple model estimation, as a field of study, is a great way to attack certain systems with

dynamic mismodeling, but because it requires you to discretize different maneuvers it loses the

ability to deal with general maneuvers where no a priori information is available. Additionally, the

added computation time limits real-time applicability, and its method are not designed to address
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data sparse systems. As such it is not the best method to approach the research problem of this

thesis.

What is missing in all of this literature is an automated method that estimates in dynamically

mismodeled systems using any type of observation for any type of system (assuming the situation is

observable) with non-cooperative and data sparse observations while obtaining information about

the mismodeling. Different methods mentioned here cover certain aspects of the problem, but no

one method covers it all. The Adaptive OCBE, as will be developed in the following chapters, is

designed to fill this hole so that it can be implemented as a real-time state estimator and maneuver

detection algorithm for SSA applications. Its general form will expand its applicability to many

other systems too.

1.3.3 Control Distance Metrics

The problems of object correlation, maneuver detection, and maneuver characterization in

data sparse environments were addressed by Holzinger, Scheeres, and Alfriend [28] with a distance

metric approach that is based on optimal control policies. They develop a concept called control

distance metrics that measure the integrated control effort that connects two states at different

times with a given dynamical model. This metric may be used to probabilistically determine the

likelihood that a given measurement is properly associated with a given target or if that target has

mismodeled dynamics. A more detailed summary of this method is provided in Chapter 2.

Work with this control distance metric framework has been limited to object correlation,

maneuver detection, and characterization. We seek to advance this research into a full estimation

algorithm that estimates a system’s state, detects mismodeled dynamics (maneuvers), compen-

sates for mismodeled dynamics, and estimates those mismodeled dynamics. The algorithm should

be highly automated, and it should be designed to work in data-sparse environments with nonco-

operative observations. With the problem and motivation fully defined for this research we present

the following summary of contributions that this thesis as a whole will provide.
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1.4 Contributions

The main contribution of this thesis is the Optimal Control Based Estimator and its com-

panion algorithms. Each of the specific pieces of this larger contribution are identified below.

(1) The Nonlinear Optimal Control Based Estimator (OCBE):

A nonlinear estimator with a meaningful cost function that accounts for a priori state

error, measurement error, and dynamic mismodeling in a least squares sense. The nonlinear

estimator consists of a set of necessary conditions for state and adjoint trajectories that

must be solved via a nonlinear root finder. The estimator outputs both state and control

trajectories, the latter of which represents the mismodeling in the system. The estimated

dynamics represent the minimum amount of dynamics necessary to connect the boundary

states under the assumed dynamical model.

(2) The Generalized Linear Optimal Control Based Estimator (GL-OCBE):

A linearized version of the OCBE that uses arbitrary nominal initial state and initial

adjoint. The method is designed such that it may be iterated to solve the nonlinear OCBE

equations. In addition to state and control estimates, it provides measures of uncertainty

in these estimates through a covariance.

(3) The Ballistic Linear Optimal Control Based Estimator (BL-OCBE):

A special version of the GL-OCBE that limits the nominal state and adjoint trajectories

to be ballistic - meaning the nominal adjoint is zero for all time (i.e., there is no nominal

optimal control policy). Since the method does not have an arbitrary nominal initial adjoint

it cannot be iterated to solve the nonlinear OCBE necessary equations. However, the

algorithm has special properties including the automatic inclusion of dynamic uncertainty

in a manner that is completely equivalent to continuous process noise, a state estimate

and covariance at the measurement epoch that are equivalent to the Kalman Filter state

estimate and covariance, and a state estimate and covariance at the a priori epoch that
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are equivalent to the smoothed Kalman Filter state estimate and covariance. As such, the

BL-OCBE is shown to be a generalization of the Kalman Algorithm that also provides

information on dynamic mismodeling through the estimated optimal control policies.

(4) OCBE Maneuver Detection Method:

A method that leverages the estimated states and optimal control policies that come out of

the OCBE to determine whether those control policies represent deterministic mismodeling

within the estimator. The method uses a control distance metric framework to identify

whether the optimal control policies are statistically significant, and if they are then the

control policies represent a reconstruction of the mismodeled dynamics.

(5) Optimal Control Based Dynamics Parameter Estimation Method:

If the estimated optimal control policies are deemed to represent deterministic mismodeling

in the system, then this parameter estimation method may be used to estimate dynamics

parameter from the control policies themselves. The method chooses parameters that

minimize the residuals of the estimated controls and a basis of the estimated forces. The

method specifically focuses on application to atmospheric drag and solar radiation pressure

parameter estimation due to similarities in the functional forms of the controls and those

specific object-dependent orbital perturbations.

(6) OCBE Full Smoother:

A smoothing algorithm that recursively incorporates the information from all measurements

to the entire observation arc. The method produces a smoothed state trajectory starting

at the initial time through all measurement epochs such that it provides a continuous state

trajectory in time and an associated optimal control policy informed by all measurements.

The state trajectory is forced to be continuous due to the presence of the non-impulsive

smoothed control estimates.

(7) Adaptive Optimal Control Based Estimator:
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An automated version of the OCBE that uses maneuver detection results to adaptively

select the assumed dynamic uncertainty parameter at each epoch. This processes all mea-

surements without user input at each epoch, thus allowing for automated real-time state

estimation, maneuver detection, and maneuver reconstruction.

1.5 Publications

In this section, a complete list of publications and conference presentations completed during

the student’s graduate studies is provided. These papers and presentations form the basis of the

material presented in this thesis.

1.5.1 Journal Publications

(1) Lubey, D.P. & Scheeres, D.J., “Combined State and Dynamics Estimation for Dynami-

cally Mismodeled Systems: The Optimal Control Based Estimator,” Journal of Guidance,

Control, and Dynamics. (In Preparation)

(2) Lubey, D.P. & Scheeres, D.J., “State and Dynamics Estimation with the Optimal Control

Based Estimator,” IEEE Transactions on Automatic Control. (Submitted)

(3) Lubey, D.P. & Scheeres, D.J., “Identifying and Estimating Mismodeled Dynamics via

Optimal Control Problem Distance Metrics,” Journal of Guidance, Control, and Dynamics,

Vol. 37, No. 5, (2014), pp. 1512-1523. doi: 10.2514/1.G000369

1.5.2 Conference Papers and Presentations

(1) Baresi, N., Lubey, D.P., & Scheeres, D.J., “Model Estimation Using Hovering Satellites

About Asteroids,” Proceedings of the 66th International Astronautical Conference, October

2015.

(2) Lubey, D.P. & Scheeres, D.J., “Towards Real-Time Maneuver Detection: Automatic State

and Dynamics Estimation with the Adaptive Optimal Control Based Estimator,” Proceed-
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ings of the 2015 Advanced Maui Optical and Space Surveillance Technologies Conference,

September 2015.

(3) Lubey, D.P. & Scheeres, D.J., “Automated State and Dynamics Estimation in Dynami-

cally Mismodeled Systems with Information From Optimal Control Policies,” Proceedings

of the 18th International Conference on Information Fusion, July 2015.

(4) Lubey, D.P., Scheeres, D.J., & Erwin, R.S., “Maneuver Detection and Reconstruction of

Stationkeeping Spacecraft at GEO Using the Optimal Control-Based Estimator,” Proceed-

ings of the 2015 Workshop on Advanced Control and Navigation for Autonomous Aerospace

Vehicles, June 2015.

(5) Lubey, D.P., Doostan, A., & Scheeres, D.J., “Estimating Object-Dependent Natural Or-

bital Dynamics with Optimal Control Policies: A Validation Study,” Proceedings of the

2015 AAS/AIAA Space Flight Mechanics Meeting, January 2015.

(6) Lubey, D.P. & Scheeres, D.J., “Robust Tracking and Dynamics Estimation with the

Automated Optimal Control Based Estimator,” Proceedings of the 2015 AAS/AIAA Space

Flight Mechanics Meeting, January 2015.

(7) Lubey, D.P. & Scheeres, D.J., “Supplementing State and Dynamics Estimation with Infor-

mation from Optimal Control Policies,” Proceedings of the 17th International Conference

on Information Fusion, July 2014.

(8) Lubey, D.P. & Scheeres, D.J., “Combined Optimal Control and State Estimation for the

Purposes of Maneuver Detection and Reconstruction,” Proceedings of the 2014 American

Control Conference, Portland, OR, 2014.

(9) Lubey, D.P. & Scheeres ,D.J., “An Optimal Control Based Estimator for Maneuver and

Natural Dynamics Reconstruction,” Proceedings of the 2013 Advanced Maui Optical and

Space Surveillance Technologies Conference, September 2013.
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(10) Lubey, D.P. & Scheeres, D.J., “An Optimal Control Based Estimator for Maneuver Detec-

tion and Reconstruction,” Proceedings of the 2013 AAS/AIAA Astrodynamics Specialists

Meeting, August 2013.

(11) Lubey, D.P. & Scheeres, D.J., “Identifying and Quantifying Mis-Modeled Dynamics via

Optimal Control Problem Distance Metrics,” Proceedings of the 2012 AIAA/AAS Astro-

dynamics Specialists Meeting, August 2012.

1.5.3 Abstracts, Posters, and Presentations

(1) Lubey, D.P., “Achieving Real Time Maneuver Detection: The Adaptive Optimal Control

Based Estimator,” 5th Annual Smead Symposium, May 2015.

(2) Lubey, D.P., “Maneuver Detection and Reconstruction in Data Sparse Systems with an

Optimal Control Based Estimator,” 4th Annual Smead Symposium, May 2014.

(3) Lubey, D.P., “Dynamics Estimation and Maneuver Reconstruction Using Optimal Con-

trol Policies,” 3rd Annual Smead Symposium, April 2013.

(4) Lubey, D.P., “Identifying and Quantifying Mis-Modeled Dynamics via Optimal Control

Policies,” NASA Technology Days, November 2012.

(5) Lubey, D.P., “Dynamics Estimation Using Optimal Control Policies,” 2nd Annual Smead

Symposium, May 2012.

1.6 Thesis Organization

This thesis focuses on developing, understanding, and applying the OCBE and its companion

algorithms. The thesis is ordered to show the development of the basic theory of the estimator

first, and then it focuses on the companion algorithms that are used to understand the dynamic

mismodeling in the system.
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Chapter 2 includes an overview of necessary background information that will be referred to

throughout the rest of the thesis. This includes: the mathematics behind control distance metrics

as developed by Holzinger, Scheeres, and Alfriend [28]; the necessary conditions that accompany

functional optimization of a standard Bolza-type cost function; and the state and adjoint dynamical

models that will be used in the simulations that follow throughout the remainder of the thesis. This

provides the basis for how to form the cost function of the OCBE, and how to optimize that cost

function to create the estimator.

Chapter 3 provides a full development of the OCBE and its linear counterparts. It starts with

the definition of the of the OCBE cost function, the resulting necessary conditions of the OCBE,

and a proof of its existence under certain conditions. Next, there is a treatment of the GL-OCBE

including the full linearization method, simplification, and calculation of associated covariances.

Next, the focus is on the BL-OCBE. This includes special properties of ballistic trajectories, how to

simplify the GL-OCBE into this form, and discussions of its noise propagation properties, smoothing

properties, and its relation to the Kalman Filter. Next, a method is developed to smooth the results

of the OCBE across more than one observation gap, such that a final smooth state trajectory can

be obtained with associated controls. Finally, a concluding discussion is provided to illuminate the

key discoveries and important takeaways.

Chapter 4 focuses on the application of the OCBE and its linear counterparts to sample

tracking applications. This includes a discussion on how to implement the algorithm computation-

ally, and then scenarios where the the nonlinear OCBE and BL-OCBE are implemented to track

Low Earth Orbit (LEO) and Geosynchronous Earth Orbit (GEO) based satellites that have some

degree of dynamic mismodeling (natural and / or active dynamical mismodeling). Following is a

conclusion discussing the effectiveness of the OCBE as applied to these tracking scenarios.

Chapter 5 discusses the application of maneuver detection algorithms to the OCBE, and

what the reconstructions of the mismodeled dynamics can tell us. It starts with a discussion of how

control distance metrics may be implemented into the GL-OCBE framework, and the associated

hypothesis testing that can be done to identify if the measurement corresponds to a detected
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maneuver. Next, this GL-OCBE maneuver detection development is simplified for application

to the BL-OCBE. Next, an algorithm that estimates dynamics parameters (specifically related

to atmospheric drag and solar radiation pressure) using the estimated optimal control policies is

developed and discussed with relation to the OCBE. Following this are sample applications of

the maneuver detection algorithms to the same simulations from the previous chapter. Finally, a

discussion of the algorithms’ effectiveness concludes the chapter.

Chapter 6 combines the OCBE and the maneuver detection algorithm to create a fully adap-

tive estimator that automatically detects, compensates for, and reconstructs mismodeled dynamics.

This discussion of the automation of the OCBE specifically focuses on the automation criterion,

the existence of a solution to this criterion, how to obtain the solution if it does exist, and a formal

overview of how the adaptive OCBE should be implemented. Some sample applications of the

algorithm to tracking scenarios is provided, and then the chapter is concluded with a discussion of

the adaptive algorithm and its abilities.

Chapter 7 concludes this thesis with a summary and discussion of the most important devel-

opments, as well as a discussion of avenues for future research and development of the OCBE and

its companion algorithms.



Chapter 2

Background Material

Before deriving the Optimal Control Based Estimator, the central algorithm of this thesis, it is

important to first cover some important background information. This includes an overview of how

a Bolza-type cost function is optimized via functional optimization since this will define necessary

conditions for the OCBE, an overview of control distance metrics as they motivate the creation of

the OCBE, and defining the dynamical and measurement models that we will be applying these

algorithms to throughout this thesis. This chapter will cover each of these topics as they relate the

OCBE. This will setup the derivation and application of the OCBE in the subsequent chapters.

2.1 Optimization of Bolza-Type Cost Function

The process of deriving an Optimal Control Policy using a generic cost function is summarized

below, as it plays a crucial role in our filter derivation. More detailed accounts are provided by

Lawden [41, 42], Marec [53], Stengel [70], and Prussing [60, 59] among others.

An arbitrary cost function may be written in the Bolza form shown in Eq. 2.1. In this notation

the Lagrangian portion of the cost (L) is evaluated across the entire time of flight, whereas the

boundary costs (K0 and Kf ) are evaluated only at the initial and/or final epochs. In this notation

x⃗ refers to the state of the system, u⃗ refers to control input into the system, and the subscripts

indicate at what epoch the values are evaluated (0 = initial epoch and f = final epoch).To fully

define the system, we make the following definitions: t ∈ R, x⃗ ∈ Rn; u⃗ ∈ U ⊂ Rm; and K0, Kf , and
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L are scalar functions. U is a compact set with at most finite discontinuities.

J (t0, x⃗0, tf , x⃗f , u⃗(t)) =K0(x⃗0, t0) +Kf(x⃗f , tf) + ∫
tf

t0
L (x⃗(τ), u⃗(τ), τ)dτ (2.1)

In addition to these soft constraints, hard constraints are imposed via Lagrange multipliers

(µ⃗0,µ⃗f , and p⃗(t)). The first two hard constraints force the initial and final times and states to lie

on given manifolds ({g0(x⃗0, t0) = 0⃗} ∶ RnxR → Rq and {gf(x⃗f , tf) = 0⃗} ∶ RnxR → Rs). The final

hard constraint enforces the state dynamics to adhere to a given function of the state, control,

and time ( ˙⃗x(t) = f⃗ (x⃗(t), u⃗(t), t)). We make the additional constraint that the state dynamics are

affine in the control, and any multipliers on the control are not state dependent (f⃗ (x⃗(t), u⃗(t), t) =

f⃗n (x⃗(t), t) + B(t)u⃗(t)). The following derivation does not necessitate this assumption, but it

simplifies the approach. It should be noted that other known controls may be put into the state

dynamics, but this does not affect the following analysis. The Lagrange multiplier that enforces

this dynamic constraint (p⃗(t) ∈ Rn) is termed the system’s adjoint or costate. The adjoined cost

function is provided in Eq. 2.2.

JA(t0, x⃗0, µ⃗0, tf , x⃗f , µ⃗f , u⃗(t), p⃗(t)) = (2.2)

= [K0(x⃗0, t0) + µ⃗
T
0 g0(x⃗0, t0)] + [Kf(x⃗f , tf) + µ⃗

T
f gf(x⃗f , tf)]

+ ∫

tf

t0
[L (x⃗(τ), u⃗(τ), τ) + p⃗(τ)T (f⃗ (x⃗(τ), u⃗(τ), τ) − ˙⃗x(τ))]dτ

The system as defined may be defined via a Hamiltonian formulation as shown in Eq. 2.3.

This provides a more compact form for optimization as well as useful properties (such as the

symplectic state transition matrix), which are used later in analytical manipulation.

H (x⃗(t), u⃗(t), p⃗(t), t) = L (x⃗(t), u⃗(t), t) + p⃗(t)T f⃗ (x⃗(t), u⃗(t), t) (2.3)

Freeing up the boundary times and states when taking the first variation of the cost we obtain

the necessary conditions for optimality (Eqs. 2.4-2.10) subject to the Hamiltonian definition.

û(t) = argmin
u⃗∈U

(H (x⃗(t), u⃗(t), p⃗(t), t)) (2.4)
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˙⃗x(t) =
∂Ĥ

∂p⃗

T

= f⃗ (x⃗(t), û(t), t) = f⃗n (x⃗(t), t) +B(t)û(t) (2.5)

˙⃗p(t) = −
∂Ĥ

∂x⃗

T

= −
∂L

∂x⃗

T

−
∂f⃗

∂x⃗

T

p⃗(t) (2.6)

Ĥ0 =
∂K0(x⃗(t0), t0)

∂t
+ µ⃗T0

∂g0(x⃗(t0), t0)

∂t
(2.7)

p⃗(t0) = −
∂K0(x⃗(t0), t0)

∂x⃗

T

−
∂g0(x⃗(t0), t0)

∂x⃗

T

µ⃗0 (2.8)

Ĥf = −
∂Kf(x⃗(tf), tf)

∂t
− µ⃗Tf

∂gf(x⃗(tf), tf)

∂t
(2.9)

p⃗(tf) =
∂Kf(x⃗(tf), tf)

∂x⃗

T

+
∂gf(x⃗(tf), tf)

∂x⃗

T

µ⃗f (2.10)

The first necessary condition (Eq. 2.4) defines the optimal control policy (u⃗(t)) in terms

of the state and adjoint using the result from the Pontryagin Minimum Principle. The next two

necessary conditions (Eqs. 2.5 and 2.6) provide equations of motion for the state and adjoint,

respectively. The final four necessary conditions (Eqs. 2.7 - 2.10) are the transversality conditions,

which set boundary conditions on the initial and final times and adjoints. In these equations H0

and Hf represent the Hamiltonian evaluated at the initial and final epoch, respectively. The hat

above a quantity signifies this is the optimal solution for the given variable.

Integrating the state and adjoint dynamics to an arbitrary epoch t given initial conditions

tk−1, x⃗k−1, and p⃗k−1 we define the solution in the form of a solution flow as shown below.

φx(t; tk−1, x⃗k−1, p⃗k−1) = x⃗k−1 + ∫

t

tk−1
˙⃗x(τ, x⃗, p⃗)dτ (2.11)

φp(t; tk−1, x⃗k−1, p⃗k−1) = p⃗k−1 + ∫

t

tk−1
˙⃗p(τ, x⃗, p⃗)dτ (2.12)

It should be noted that we do not explicitly account for the control vector in this propagation

because the results of the Pontryagin Minimum Principle create a direct mapping between the

control and the state and adjoint.
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Furthermore, we define motion in the vicinity of this solution via a linear expansion where

the state and adjoint partials are quadrants of the state transition matrix. The full state transition

matrix is defined in Eq. 2.13. The dynamics of this matrix and initial conditions are defined in

Eqs. 2.14 and 2.15 where z⃗ is the combined state and adjoint vector (z⃗ = [x⃗T , p⃗T ]T ).

Φ(tk, tk−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φxx(tk, tk−1) Φxp(tk, tk−1)

Φpx(tk, tk−1) Φpp(tk, tk−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.13)

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

φx(tk)
∂x⃗k−1

φx(tk)
∂p⃗k−1

φp(tk)
∂x⃗k−1

φp(tk)
∂p⃗k−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRRR(tk;tk−1,x⃗k−1,p⃗k−1)

Φ̇(t, τ) = A(t)Φ(t, τ) (2.14)

Φ(τ, τ) = I2nx2n

A(t) =
∂ ˙⃗z

∂z⃗
∣
(t,x⃗(t),p⃗(t))

(2.15)

As mentioned, the symplectic nature of the STM falls out of the Hamiltonian Formulation

of the dynamical system [58]. This results in the relations between the quadrants of the STM as

described in Eq. 2.16.

Φxx(t, τ)
TΦpx(t, τ) = (Φxx(t, τ)

TΦpx(t, τ))
T

Φpp(t, τ)
TΦxp(t, τ) = (Φpp(t, τ)

TΦxp(t, τ))
T

(2.16)

Φxx(t, τ)
TΦpp(t, τ) −Φpx(t, τ)

TΦxp(t, τ) = Inxn

These linear dynamics will be used to find a solution to this nonlinear optimization problem,

as well as prove its existence. Beyond this, these definitions will be relied upon to define the

linear estimator during the development of the OCBE in Chapter 3. Having defined notation

for optimization and linearization of the system, we now proceed to a discussion about control

distance metrics, which inform the development of the OCBE and its accompanying maneuver

detection capabilities.
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2.2 Control Distance Metrics

Control distance metrics, as defined by Holzinger, Scheeres, and Alfriend [28], may be used to

quantify the level of mismodeling within a system. The metric takes two time, state, and covariance

triplets (a = (ta, x⃗a, Pa) and b = (tb, x⃗b, Pb)) from different epochs along with an assumed dynamical

model. A control policy that minimizes Eq. 2.17 is then generated to absolutely connect the

nominal states from each triplet. This control policy integrated in the same objective it minimizes

defines the control distance metric (Eq. 2.17).

DC(a, b) = inf
u⃗∈U

[∫

tb

ta

1

2
u⃗(τ)T u⃗(τ)dτ] (2.17)

In terms of maneuver detection, these metrics may be used to quantify state distances in

a far more meaningful way than a typical metric like a Mahalonobis distance. Specifically, it

quantifies the minimum amount of extra dynamics needed to connect the nominal state estimates

when constraining the dynamical model as discussed. As such the metric may be used to assess

how far states are from one another in a dynamics space, which is meaningful for maneuver-based

analysis. Given that the states in the triplets are uncertain estimates with known covariances, the

metrics themselves are random variables. As such, the associated maneuver detection method is

probabilistic. Linearized about a nominal state and adjoint trajectory, the metric may be rewritten

in a linear form that allows for quantification of its distribution. This linearized form is summarized

in Eqs. 2.18 - 2.23 where ũ(t) is the control on the nominal state and adjoint trajectories.

DC(a, b) = D̃C(a, b) + ω⃗(tb, ta)
T δX⃗ + δX⃗TΩ(tb, ta)δX⃗ (2.18)

= D̃C(a, b) +DU

D̃C(a, b) = ∫
tb

ta

1

2
ũ(τ)T ũ(τ)dτ (2.19)

ω⃗(tb, ta) = ∫
tb

ta
Λ(τ, ta)

TB(τ)ũ(τ)dτ (2.20)

Ω(tb, ta) =
1

2
∫

tb

ta
Λ(τ, ta)

TB(τ)B(τ)TΛ(τ, ta)dτ (2.21)
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Λ(t, ta) = [ Φpx(t, ta) −Φpp(t, ta)Φxp(tb, ta)
−1Φxx(tb, ta) Φpp(t, ta)Φxp(tb, ta)

−1 ] (2.22)

δX⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

δx⃗a

δx⃗a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.23)

The resulting mean and variance of this linearized metric is defined in Eqs. 2.24 and 2.25 where

PX is the covariance of the random vector δX⃗.

µC(a, b) = ∫
tb

ta

1

2
ũ(τ)T ũ(τ)dτ +Tr [Ω(tb, ta)PX] (2.24)

σ2
C(a, b) = ω⃗(tb, ta)

TPX ω⃗(tb, ta) + 2Tr [Ω(tb, ta)PXΩ(tb, ta)PX] (2.25)

Knowing the statistical form of the distance metric, the probability that the calculated metric

represents deterministic mismodeling may be obtained via a hypothesis test. To perform this test

the deterministic portion of the metric is compared against the distribution of the stochastic portion.

The probability that the metric represents deterministic mismodeling is assessed as the probability

that the calculated metric (D̃C) exceeds the stochastic error (DU ). This forms the basis of the

hypothesis testing done in the OCBE maneuver detection process.

Singh, Horwood, and Poore [66] adapted the Control Distance Metric approach by using a

minimum-fuel cost function, which yields impulsive control policies rather than smooth continuous

controls. This makes the method far more numerical than the quadratic control policy approach,

but it demonstrates a different application of this metric formulation.

This thesis uses the control distance metric as a foundation, and then builds on it to create a

combined state estimator, maneuver detection, and maneuver reconstruction algorithm. A modified

version of this metric is used to construct the OCBE cost function, which combines three pieces

of information (i.e. a priori state estimate, measurement, and confidence in the dynamical model)

into a simultaneous minimization procedure. The resulting algorithm simultaneously outputs state

estimates at both epochs along with an optimal control policy that represents mismodeling within

the system. Using a hypothesis test similar to the one described above, the statistical significance
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of the estimated mismodeling is then determined to assess whether it represents a deterministic

error. This process is then automated using the maneuver detection algorithm to allow for real-time

application to complex systems.

While the OCBE will be derived for application to an arbitrary mechanical system, the focus

will be on application to SSA problems. As such, we define the dynamics for these type of systems

in the following section, since they will be used for all applications within this thesis.

2.3 Dynamical Models for Space Situational Awareness

With the primary application of the OCBE being SSA, it is important to define the dynamics

of the system. Specifically, orbital dynamics in Earth orbit. The dynamical models used in the

simulations throughout this paper are not overly complex, as they are just meant to demonstrate

the algorithm under representative dynamics rather than too specific a situation. Adding more

perturbations generally does not affect the results unless the perturbation is mismodeled within the

estimator. In this section we provide models for the following specific forces: two-body gravitation,

a non-spherical gravity term (J2: Oblateness), atmospheric drag, solar radiation pressure, and

third-body gravitational effects. These models are based on those presented in Tapley, Schutz, and

Born [83], Vallado [84], and Curtis [13]. We start with a description of the state dynamics, then

derive the resulting adjoint dynamics.

This section focuses on the natural dynamics, which are only time and state dependent. As

defined previously, the dynamics are affine in the control with a time-dependent gain on the control

vector. For all SSA applications in this paper we use the following control gain matrix.

B(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03×3

I3×3

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.26)

This includes three control terms (ux, uy, and uz). Each represents the control in one of three

principle directions that define the frame that the state vector and its dynamics are defined in.

The state vector we use for estimation in these simulations includes cartesian position and velocity

in the Earth Centered Inertial (ECI) frame with respect to the center of the Earth. That state
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vector is defined below.

x⃗T = [ rx ry rz vx vy vz ] (2.27)

2.3.1 State dynamics

The full natural state dynamical model is expressed in Eq. 2.28.

f⃗n(t, x⃗) = −
µ

r3
r⃗ + a⃗J2(t, x⃗) + a⃗Drag(t, x⃗) + a⃗SRP (t, x⃗) + a⃗3B(t, x⃗) + a⃗other(t, x⃗) (2.28)

In order from left to right these accelerations represent the effects of two-body gravity, Earth

oblateness effects (J2), atmospheric drag, solar radiation pressure (SRP), third-body gravity effects,

and other perturbations. By “other” we mean that any perturbation not mentioned here such as

outgassing, known maneuvers, non-spherical gravity terms, etc. The individual perturbations are

fully defined in the following subsections.

2.3.1.1 Non-Spherical Gravity (J2)Acceleration

The J2 acceleration is expressed in the ECI frame in Eqs. 2.29 and 2.30.

a⃗J2(t, x⃗) =
−3µRe2J2

2r5

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(1 − 5 sinη2)rx

(1 − 5 sinη2)ry

(3 − 5 sinη2)rz

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.29)

sinη =
rz
r

(2.30)

The spacecraft position is parameterized into ECI components (rx, ry, and rz) within this

definition. Relevant parameters are defined in Table 2.1. The functional form comes from the spher-

ical harmonics definitions, which uses Legendre polynomials to express the gravitational potential

of an arbitrary mass distribution [84].

2.3.1.2 Atmospheric Drag

The atmospheric drag acceleration model used in this paper is defined in Eqs. 2.31-2.35.

a⃗Drag(t, x⃗) = −
1

2
ρ(r)Bvrelv⃗rel (2.31)
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Table 2.1: Gravitational Dynamics Parameters

Parameter Notation Value Units

Earth’s Gravitational Parameter µ 3.986x1014 m3/s2

Earth’s Mean Equatorial Radius Re 6378136.3 m
Earth’s Oblateness Parameter J2 1.0826x10−3 −

B =
CDA

m
(2.32)

ρ(r) = ρ0 exp [
r0 − r

H
] (2.33)

v⃗rel = v⃗ − ω⃗
A/N

× r⃗ (2.34)

ω⃗A/N = θ̇K̂ (2.35)

The model uses a typical exponential decay law for atmospheric density as a function of

orbital altitude. It also assumes that the atmosphere rotates with the Earth. Relevant parameters

are defined in Table 2.2. K̂ represents the unit vector along the spin axis of the Earth in the ECI

frame.

Table 2.2: Atmospheric Drag Dynamics Parameters

Parameter Notation Value Units

Exponential Cutoff Altitude r0 700 km
Atm. Scale Height H 88.667 km
Density at Cutoff ρ0 3.614x10−13 kg/m3

Earth’s Rotation Rate θ̇ 7.2921x10−5 rad/s

This model is a simplified version of more complex dynamical models. We do not account

for variation in atmospheric density except in the radial direction (i.e. it neglects solar interaction

on the day side of Earth), and the atmosphere is forced to rotate with the Earth’s surface. More

complicated models account for these dynamic natural occurrences, but in general no drag model

is perfect. Accounting for variation in the drag parameter due to attitude-coupling also offers more

room for development of this theory, but this requires specific object models so the results would

not be general to all objects in orbit as we aim for in this algorithm.
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2.3.1.3 Solar Radiation Pressure

The Solar Radiation Pressure (SRP) model is defined in Eqs. 2.36-2.39.

a⃗SRP (t, x⃗) = pSRPP (
S r⃗
Sr

) (2.36)

P =
SA

m
(2.37)

pSRP =
Lsun

4cπ(Sr)2
(2.38)

S r⃗ = r⃗ − r⃗sun (2.39)

This simplified “cannonball” model simply applies an acceleration proportional to the SRP

in the direction opposite the sun, and neglects effects such as shadowing. As the distance from the

sun (Sr) varies negligibly over the course of a typical geocentric orbit the acceleration associated

with SRP is effectively constant. This also assumes a constant projected area (A). By definition,

r⃗sun is the vector pointing from the Earth to the Sun with a magnitude equal to the distance

between the two bodies. As such, S r⃗ points from the Sun to the spacecraft, which means the SRP

acceleration pushes the spacecraft away from the Sun. The cannonball model does not account for

attitude coupling and non-axial forces and moments. More complicated models that rely on object

geometry and attitude are available such as those that rely on quantizing an orbiting object into a

finite number of facets and Fourier based models as discussed by McMahon [55], but these generally

require knowing object geometry and parameters so they cannot be applied to an unknown object

in orbit.

Table 2.3: Solar Radiation Pressure Constant Dynamics Parameters

Parameter Notation Value Units

Solar Luminosity LS 3.8395x1026 W
Earth-Sun Distance dS 1.4960x1011 m
Speed of Light c 299792458 m/s
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2.3.1.4 Third Body Gravity

While the universal law of gravitation applies to all gravity forces, when considering the effects

of a perturbing body on the two body solution we obtain a slightly different form as described in

Eq. 2.40. In this definition, r⃗3B is position of the third body with respect to the primary (i.e.

Earth), and ∆r⃗ is the position of the third body with respect to the target (i.e. secondary body

orbiting the Earth, ∆r⃗ = r⃗3B − r⃗).

a⃗3B(t, x⃗) = µ3B (
∆r⃗

∣∆r⃗∣3
−

r⃗3B

∣r⃗3B ∣3
) (2.40)

This equation requires an ephemeris of the third body, so that its position may be calculated

as a function of time since this is not part of the state vector. Additionally, gravitational parameters

for the perturbing bodies must be known. These values are summarized for the sun and moon (the

chief perturbing bodies for Earth orbit) in Table 2.4.

Table 2.4: Third Body Gravitational Dynamics Parameters

Parameter Notation Value Units

Sun’s Gravitational Parameter µsun 1.327x1020 m3/s2

Moon’s Gravitational Parameter µmoon 4.903x1012 m3/s2

2.3.2 Adjoint Dynamics

Deriving the adjoint dynamics for this specific natural dynamical model requires one to apply

Eq. 2.6 to the acceleration models. These dynamics are defined in Eq. 2.41 with simplified results

provided in Eqs. 2.42-2.48.

˙⃗p =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− (
∂f⃗n
∂r⃗ )

T
p⃗v

−p⃗r − (
∂f⃗n
∂v⃗ )

T
p⃗v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− [ ∂
∂r⃗

(−
µ
r3
r⃗ + a⃗J2(t, x⃗) + a⃗Drag(t, x⃗) + a⃗SRP (t, x⃗) + a⃗3B(t, x⃗))]

T
p⃗v

−p⃗r − [ ∂
∂v⃗ (a⃗Drag(t, x⃗))]

T
p⃗v

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.41)

∂

∂r⃗
(−

µ

r3
r⃗) = −

µ

r3
(I3x3 −

3

r2
r⃗r⃗T) (2.42)
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∂

∂r⃗
(a⃗J2(t, x⃗)) = (−

3µRe2J2

2r5
)[−

5

r2
((1 − 5 sin2 η) r⃗r⃗T + 2rzK̂r⃗

T ) (2.43)

+ (1 − 5 sin2 η) I3x3 −
10rz r⃗

r2
(K̂T

−
rz r⃗

T

r2
) + 2K̂K̂T

]

∂

∂r⃗
(a⃗Drag(t, x⃗)) = −

a⃗Drag r⃗
T

rH
+

1

2
Bρ(r)(vrelI3x3 +

⃗vrel ⃗vrel
T

vrel
) [ω̃] (2.44)

[ω̃] =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −θ̇ 0

θ̇ 0 0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.45)

∂

∂r⃗
(a⃗SRP (t, x⃗)) = −

3a⃗SRP (S r⃗)
T

(Sr)
2

+
pSRPP

(Sr)
I3x3 (2.46)

∂

∂r⃗
(a⃗3B(t, x⃗)) = −

µ3B

∆r3
[I3×3 − 3

∆r⃗∆r⃗T

∆r2
] (2.47)

∂

∂v⃗
(a⃗Drag(t, x⃗)) = −

1

2
Bρ(r)(vrelI3x3 +

⃗vrel ⃗vrel
T

vrel
) (2.48)

It is important to include all perturbations in the adjoint dynamics. Without the appropriate

partials, the OCP will not replicate the mismodeled dynamics as accurately.

2.4 Measurement Models for Space Situational Awareness

In this section, we define the four types of measurements used throughout simulations in this

paper. These include range and range-rate observations as well as optical (azimuth and elevation)

measurements. In these expressions, r⃗ refers the vector position of the target with respect to the

center of the Earth and r⃗obs is the position of the observer with respect to the center of the Earth.

It assumed that the observer is fixed in the Earth Centered Fixed (ECF) frame - a frame that

rotates with the Earth. As such these equations are valid for observers fixed to the Earth and

space-based observatories in Geostationary orbit. These equations do not account for Earth tides.

It assumes the Earth is a constantly rotating rigid body.
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2.4.1 Range and Range-Rate Measurements

Range and range-rate observation are two types of common SSA measurements. To calculate

them, we first define a range vector, which describes the position of the target with respect to the

observer as shown below.

ρ⃗ = r⃗ − r⃗obs (2.49)

In this definition, it is important that both vectors are expressed in the same reference frame. Using

this definition, we easily calculate range as the L2 norm of the vector (all norms are assumed L2

unless otherwise stated). Additionally, range-rate may be calculated by taking the time derivative

of range as shown below.

ρ = ∣∣ρ⃗∣∣ (2.50)

ρ̇ =
ρ⃗T (v⃗ − ω⃗♁ × r⃗)

ρ
(2.51)

In this calculation, we assume that the observer rotates with the Earth such that its position is

constant in the ECF frame. ω⃗♁ refers to the rotation of the Earth with respect to the inertial

frame. Together these equations define an explicit mapping from target position and velocity (v⃗)

to range and range-rate measurements.

2.4.2 Optical Measurements

Optical measurements are another typical type of observation for SSA applications. These

can be attained for both LEO and GEO targets. They simply require a camera system capable

of providing accurate pointing information (on the order of arcseconds) and the ability to detect

transiting objects. These measurements consist of the azimuth and elevation angles of the target

with respect to the observer in an East-North-Up (ENU) frame. We define the ENU frame as

shown below where K̂ is the inertially-fixed rotation pole of the Earth.
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û =
r⃗obs

∣∣r⃗obs∣∣
(2.52)

ê =
K̂ × û

∣∣K̂ × û∣∣
(2.53)

n̂ = û × ê (2.54)

Using these definitions, we calculate azimuth (γ) and elevation (ψ) as defined below.

ψ = sin−1
[
ρ⃗ ⋅ û

ρ
] (2.55)

γ = γ0 + cos−1
[

ρ⃗ ⋅ n̂

∣∣ρ⃗ − ρ sin(ψ)û∣∣
] (2.56)

γ0 =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0; ρ⃗ ⋅ ê ≥ 0

π; ρ⃗ ⋅ ê < 0

(2.57)

The definition of γ0 ensures this is a continuous function with a range of [0,2π).

Having defined all necessary dynamics and measurements, reviewed control distance metrics,

and reviewed functional optimization of Bolza-type cost functions, we now have the proper back-

ground covered to proceed with the definition and derivation of the central algorithm of this thesis

- the Optimal Control Based Estimator.



Chapter 3

The Optimal Control Based Estimator

In this chapter, the core algorithm of this thesis is developed - the Optimal Control Based

Estimator. The OCBE is an estimation algorithm that is robust to dynamic mismodeling, and

it is capable of providing information on mismodeled dynamics through the control estimates it

provides. In combining state and control trajectories that are continuous across the observation

gap, the OCBE effectively preserves the continuous-time nature of the observed system, whereas

other estimation algorithms reduce it to a discrete-time system. This provides far more information

between measurements, which is especially useful in data-sparse applications. When incorporating

the full smoothing algorithm that accompanies the OCBE, a continuous state trajectory (with no

jump discontinuities) and control profile are obtained throughout the entire measurement arc, thus

expanding the benefits of a continuous time solution to the entirety of the timespan of interest.

This chapter starts with a discussion of the cost function used to derive this estimator and

the inputs into the estimator. From here, an implicit formulation for the nonlinear estimator is

developed from the necessary conditions for optimal control, and a theorem is provided relating

to the existence of the nonlinear estimator. Next, the nonlinear OCBE is linearized to develop

the GL-OCBE. Following this, the BL-OCBE is developed as a simplification of the GL-OCBE.

A discussion on the BL-OCBE is provided including its special properties and its relation to the

Kalman Filter algorithm. The theory is concluded with a development of the accompanying full

smoothing algorithm. Finally, a concluding discussion of the algorithm is provided to sum up the

contributions of this chapter. This chapter will focus on how the estimator is developed and what
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the resulting equations mean. An extended derivation of these equations is provided in Appendix

A (derivation of estimates) and Appendix B (derivation of uncertainties of estimates).

It should also be noted that deriving an estimator through an optimal control formulation

has been addressed before by Athans and Tse [6], but with a completely different cost function,

framework, and results as compared to this study. Their control variable was not used to mimic

an acceleration in the system like ours is, so the approach and results differ greatly. Rao, Rawling,

and Mayne’s constrained state estimation process [61] is also an estimator obtained through an

optimal control process, but they focus on discrete systems with a finite time moving horizon. They

estimate dynamic uncertainties as discrete processes that are constant across observation gaps, so

like others it is best aimed at systems that are data-rich (though their method does provide the

ability to constrain dynamic disturbances unlike other methods). This method pursues optimization

in a completely different manner. They use more of a batch approach over moving finite windows

(rather than the sequential process used in this paper), and the dynamic mismodelings it estimates

are different, thus our method provides a unique contribution not provided in the existing literature.

3.1 Cost Function of the OCBE

Like any sequential state estimator, the OCBE takes advantage of the two main pieces of

information in the system: 1) the a priori state estimate (x̄k−1∣k−1 ∈ Rn) and its associated covariance

(P̄k−1∣k−1 ∈ Rn×n) at the a priori epoch (tk−1 ∈ R) and 2) the measurement (Y⃗k ∈ Rp) and its

covariance matrix (Rk ∈ Rp×p) at the measurement epoch (tk ∈ R). In this notation, the state

estimate and state estimate covariance subscripts indicate both the epoch of the values as well as

the epoch through which information is provided. For instance, x̄k∣k−1 indicates the state estimate at

tk given information through tk−1. Furthermore, the bar notation indicates pre-estimate values (i.e.

values with information through tk−1) whereas hats indicate optimal estimates using all available

information (i.e. values with information through tk).

The a priori state information is blended into the cost function via an initial least squares
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boundary cost as shown below.

Kk−1(x⃗k−1) =
1

2
(x̄k−1∣k−1 − x⃗k−1)

T
P̄ −1
k−1∣k−1 (x̄k−1∣k−1 − x⃗k−1) (3.1)

This cost attempts to select a state (x⃗k−1) close to the a priori state estimate given the level

of certainty in the estimate. It should be noted that this cost is entirely nonlinear (the states are

absolute not relative to a reference trajectory), and unlike a Kalman Filter this a priori information

is not propagated to the measurement epoch. This helps to decouple the uncertainties associated

with the a priori estimate, and the mismodeling in the dynamical model.

Measurement information is included in a similar manner through a nonlinear least squares

terminal boundary cost as shown below.

Kk(x⃗k) =
1

2
(Y⃗k − h(tk, x⃗k))

T
R−1
k (Y⃗k − h(tk, x⃗k)) (3.2)

The nonlinearities in this cost are more apparent than they are in the a priori cost. In this cost

the state-observation relationship (h(t, x⃗) ∶ R×Rn → Rp) is not linearized with respect to the state

input. The cost just requires the selection of a state (x⃗k) that when mapped to measurement space

is close to the raw observation given the level of certainty in the observation.

As defined by these costs and the dynamically constrained cost function (Eq. 2.2 without

the Lagrangian term), the assumed dynamical model would force the two state estimates to be

connected in time. If the assumed dynamics are mismodeled this can lead to suboptimal estimation

or even estimate divergence in extreme cases. To account for this we include the third piece of

information available to the estimator: the dynamical model and its uncertainty. We include

an estimated fictitious control policy (u⃗(t) ∈ Rm), which acts along with the assumed dynamics

to connect the state estimates at both epochs. This estimated control policy absorbs the errors

associated with this mismodeling allowing for optimal state estimates. It physically represents the

mismodeling in the system - providing a reconstruction of the event. The cost associated with this

control is a weighted least squares Lagrangian where the control is differenced from our assumed
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control (ū(t) ∈ Rm) as shown below.

L (u⃗(t)) =
1

2
(u⃗(t) − ū(t))T Q̃(t)−1

(u⃗(t) − ū(t)) (3.3)

In practice the assumed control has an expectation of zero for all time, meaning we assume no

extra dynamics are needed on top of our assumed dynamical model (i.e. assume the dynamics

are properly modeled). The weighting associated with this cost (Q̃(t) ∈ Rm×m) is defined in the

following definition along with the statistical properties of the other inputs into the system.

Definition 3.1 (Stochastic Inputs): The values x̄k−1∣k−1, Y⃗k, and ū(t) are inputs that are

functions of the random variables η⃗k−1∣k−1, ε⃗k, and w⃗(t) as shown in the following expressions. The

asterisk superscript indicates values on the true trajectory.

x̄k−1∣k−1 = x⃗∗k−1 + η⃗k−1∣k−1 (3.4)

Y⃗k = h(tk, x⃗
∗
k) + ε⃗k

ū(t) = u⃗∗(t) + w⃗(t)

These random variables are drawn from distributions defined with the following properties.

Each is zero mean with the following defined covariances (we do not specify higher order moments

at this point).

E[η⃗k−1∣k−1] = 0⃗ (3.5)

E[ε⃗k] = 0⃗

E[w⃗(t)] = 0⃗; t ∈ [tk−1, tk]

E [η⃗k−1∣k−1η⃗
T
k−1∣k−1] = P̄k−1∣k−1 (3.6)

E [ε⃗k ε⃗
T
k ] = Rk

E [w⃗(t)w⃗(τ)T ] = Q̃(t)δ(t − τ); t, τ ∈ [tk−1, tk]

∎

As a note the assumed dynamic uncertainty (Q̃(t)) is not exactly a covariance in the dynamics.

The presence of the Dirac delta function in its definition scales a quantity of units w⃗(t)w⃗(t)T by a
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time unit. This is very similar to a process noise term, and should be selected in a similar manner.

Metrics that can be used to see if this value is set properly include measurement residuals and the

distance metrics discussed in Chapter 5. The value is adjusted until the selected metric no longer

is an outlier (according to the qualifications of the user). Care should be exercised when selecting

this value such that it does not over compensate for the mismodeled dynamics. To accomplish

this with measurement residuals, the user should select the value such that the residual is pushed

just below the outlier threshold, and for the OCBE distance metrics an automated method is

discussed in Chapter 6. By dividing the matrix by the observation gap time difference we can

obtain an approximate average covariance in the dynamics (order of magnitude mismodeling in the

dynamical model).

The cost function is designed as a weighted least squares where the weightings are the co-

variances of the stochastic inputs. This definition results in useful estimation properties as will be

discussed in the BL-OCBE section. Through Definition 3.1 we are making the assumption that

the inputs are unbiased - meaning we assume that the a priori state, measurement, and dynam-

ics represent truth. These assumptions are validated or invalidated through the distance metric

hypothesis testing. Details on this are provided in Chapter 5.

It should be noted that the a priori state estimate is the best estimate at time tk−1 given

information through time tk−1. As such the following notational equivalencies exist: x̂k−1∣k−1 =

x̄k−1∣k−1 and P̂k−1∣k−1 = P̄k−1∣k−1. This equivalence is important to the smoothing discussion later

on in section 3.5.

Having defined the inputs into the algorithm (tk−1, x̄k−1∣k−1, P̄k−1∣k−1, tk, Y⃗k, Rk, ū(t), and

Q̃(t)), and the cost function they are involved with the next task is to apply the necessary conditions

for optimality to obtain a solution for the outputs. In doing this we will create the nonlinear OCBE.

3.2 The Nonlinear OCBE

The nonlinear OCBE is defined as the nonlinear solution that minimizes the cost function

defined in the previous subsection. Our outputs include: 1) x̂k−1∣k the best estimate of the state
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at the a priori epoch given information through the measurement epoch, x̂k∣k the best estimate of

the state at the measurement epoch given information through the measurement epoch, and û(t)

the best estimate of mismodeled dynamics in the form of an optimal control policy. In the next

two subsections we will develop the equations defining this nonlinear estimator, and then provide

a proof of existence of that solution.

3.2.1 Equations of the Nonlinear OCBE

Having defined the cost function of interest, we may now proceed with applications of the

necessary conditions for optimality in order to obtain the equations of the OCBE. As discussed, the

cost function is written to be nonlinear, thus the resulting estimator equations should be nonlinear

as well.

Optimization is accomplished through application of the necessary conditions. Applying the

transversality conditions (specifically Eqs. 2.8 and 2.10) to the cost function of interest we obtain

the results of Eqs. 3.7 and 3.8, respectively.

p̂k−1∣k = −
∂Kk−1

∂x⃗k−1
∣

T

(tk−1,x̂k−1)
= P̄ −1

k−1∣k−1 (x̄k−1∣k−1 − x̂k−1∣k) (3.7)

p̂k∣k =
∂Kk

∂x⃗k
∣

T

(tk,x̂k)

= −
∂h

∂x⃗k
∣

T

(tk,x̂k∣k)
R−1
k (Y⃗k − h(tk, x̂k∣k)) (3.8)

Next, applying the Pontryagin Minimum Principle (Eq. 2.4) we can obtain an expression for

the optimal control policy in terms of the system’s adjoint (Eq. 3.9).

û(t) = −Q̃(t)B(t)T p̂(t) + ū(t) (3.9)

It should be noted that if the system is affine in the control, then this equation is state independent

and explicit. This is not a requirement for this method, but it simplifies the notation so we will

assume this for now on. Finally, the solution flow equations (Eqs. 3.10 and 3.11) are simply

obtained as defined previously.

x̂k∣k = φx(tk; tk−1, x̂k−1∣k, p̂k−1∣k) (3.10)



41

p̂k∣k = φp(tk; tk−1, x̂k−1∣k, p̂k−1∣k) (3.11)

As a consequence of the Pontryagin Minimum Principle, state and adjoint trajectories are merely

functions of initial conditions in the state and adjoint, thus control is not considered an input

parameter. However, the assumed control (ū(t)) is an input into these trajectory propagations.

This is not a function of any outputs, though, so we do not need to explicitly address it other than

addressing the uncertainty it propagates into the state and adjoint trajectories and possibly its

deterministic effects (if it selected to be anything other then a zero mean process).

These results may be rearranged in a manner, such that the optimized variables x̂k−1∣k, x̂k∣k,

and p̂k−1∣k must be selected to satisfy certain implicit functions. This result is summarized in the

following definition.

Definition 3.2 (Necessary Conditions for Optimal Solution): Given inputs tk−1, x̄k−1∣k−1,

P̄k−1∣k−1, tk, Y⃗k, Rk, h(t, x⃗), ū(t), and Q̃(t) as defined in Definition 3.1, the OCBE is the estimator

that minimizes the cost function defined below.

J (x⃗k−1, x⃗k, u⃗(t)) =
1

2
(x̄k−1∣k−1 − x⃗k−1)

T
P̄−1
k−1∣k−1 (x̄k−1∣k−1 − x⃗k−1) (3.12)

+
1

2
(Y⃗k − h(tk, x⃗k))

T
R−1
k (Y⃗k − h(tk, x⃗k))

+ ∫

tk

tk−1

1

2
(u⃗(τ) − ū(τ))T Q̃(τ)−1

(u⃗(τ) − ū(τ))dτ

Where the state dynamics are constrained to the form: ˙⃗x(t) = f(t, x⃗(t), u⃗(t)). A solution that min-

imizes this cost function has the following necessary conditions for optimality. In these definitions

the control is not explicitly indicated as the optimal solution is a function of the adjoint via the

results of the Pontryagin Minimum Principle (Eq. 3.9).

F⃗1(x̂k−1∣k, x̂k∣k, p̂k−1∣k) = φp(tk; tk−1, x̂k−1∣k, p̂k−1∣k) +
∂h

∂x⃗k
∣

T

(tk,x̂k∣k)
R−1
k (Y⃗k − h(tk, x̂k∣k)) = 0⃗ (3.13)

F⃗2(x̂k−1∣k, x̂k∣k, p̂k−1∣k) = p̂k−1∣k − P̄
−1
k−1∣k−1 (x̄k−1∣k−1 − x̂k−1∣k) = 0⃗ (3.14)

F⃗3(x̂k−1∣k, x̂k∣k, p̂k−1∣k) = x̂k∣k − φx(tk; tk−1, x̂k−1∣k, p̂k−1∣k) = 0⃗ (3.15)
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∎

These three equations define the nonlinear OCBE. A comprehensive treatment of the un-

certainty associated with the resulting estimates will not be provided here in order to preserve

generality in the state dynamics and the state-observation relationship. Instead, uncertainties will

be obtained via linearization of the estimator. First, however, an overview of solution existence is

provided in following section.

3.2.2 Existence of a Solution

Having defined the necessary conditions on a solution of this optimization problem we now

analyze the existence of such a solution in the following theorem and proof.

Theorem 3.1 (OCBE Solution Existence): The implicit functions defining the nonlinear

solution to this optimization problem (Eqs. 3.13 - 3.15) are invertible, and a solution exists for a

system with arbitrary inputs.

Proof : Equations 3.13-3.15 are a set of implicit functions with inputs tk−1, x̄k−1∣k−1, P̄k−1∣k−1,

tk, Y⃗k, Rk, ū(t), and Q(t) and outputs p̂k−1∣k, x̂k−1∣k, and x̂k∣k. Through the Implicit Function

Theorem we know that a solution to this nonlinear problem exists if we can solve for linear variations

δx̂k−1∣k, δx̂k∣k, and δp̂k−1∣k about any arbitrary point. As such we will linearize these implicit

relations about this arbitrary solution, and solve for the variations to determine requirements for

existence.

Furthermore, it is obvious from Eqs. 3.14 and 3.15 that if a solution to x̂k−1∣k exists, then

solutions to x̂k∣k and p̂k−1∣k also exist. As such we only need to worry about finding a solution for

x̂k−1∣k about an arbitrary point. The other two outputs may also be set arbitrarily, but it is not

required to demonstrate existence.

We start by linearizing these expressions about a nominal trajectory defined by the following

arbitrary initial state and adjoint: x̃k−1 and p̃k−1. We will specify the nominal state and adjoint

trajectories as such: x̃(t) = E [φx(t; tk−1, x̃k−1, p̃k−1)] and p̃(t) = E [φp(t; tk−1, x̃k−1, p̃k−1)]. Fur-

thermore, we specifically define the nominal state and adjoint at the final time as x̃k = x̃(tk) and
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p̃k = p̃(tk), respectively. This linearization process is shown in Eqs. 3.16-3.18.

F⃗1(x̂k−1∣k, x̂k∣k, p̂k−1∣k) ≈F⃗1(x̃k−1, x̃k, p̃k−1) +
∂F⃗1

∂x̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δx̂k−1∣k (3.16)

+
∂F⃗1

∂x̂k∣k
∣

(x̃k−1,x̃k,p̃k−1)
δx̂k∣k +

∂F⃗1

∂p̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δp̂k−1∣k = 0⃗

F⃗2(x̂k−1∣k, x̂k∣k, p̂k−1∣k) ≈F⃗2(x̃k−1, x̃k, p̃k−1) +
∂F⃗2

∂x̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δx̂k−1∣k (3.17)

+
∂F⃗2

∂x̂k∣k
∣

(x̃k−1,x̃k,p̃k−1)
δx̂k∣k +

∂F⃗2

∂p̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δp̂k−1∣k = 0⃗

F⃗3(x̂k−1∣k, x̂k∣k, p̂k−1∣k) ≈F⃗3(x̃k−1, x̃k, p̃k−1) +
∂F⃗3

∂x̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δx̂k−1∣k (3.18)

+
∂F⃗3

∂x̂k∣k
∣

(x̃k−1,x̃k,p̃k−1)
δx̂k∣k +

∂F⃗3

∂p̂k−1∣k

∣

(x̃k−1,x̃k,p̃k−1)
δp̂k−1∣k = 0⃗

Evaluating the partial derivatives in these linearizations we obtain the results of Eqs. 3.19-

3.21 given the definitions in Eqs. 3.22-3.26.

(p̃k + v⃗p(tk) + H̃
T
k R

−1
k δy⃗k) +Φpxδx̂k−1∣k − H̃

T
k R

−1
k H̃kδx̂k∣k (3.19)

+Φppδp̂k−1∣k = 0⃗

(p̃k−1 − P̄
−1
k−1∣k−1δx̄k−1∣k−1) + P̄

−1
k−1∣k−1δx̂k−1∣k + δp̂k−1∣k = 0⃗ (3.20)

−v⃗x(tk) −Φxxδx̂k−1∣k + δx̂k∣k −Φxpδp̂k−1∣k = 0⃗ (3.21)

δy⃗k = Y⃗k − h(tk, x̃k) (3.22)

δx̄k−1∣k−1 = x̄k−1∣k−1 − x̃k−1 (3.23)

H̃k =
∂h

∂x⃗
∣
(tk,x̃k)

(3.24)

v⃗x(t) = φx(t; tk−1, x̃k−1, p̃k−1) −E [φx(t; tk−1, x̃k−1, p̃k−1)] (3.25)
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v⃗p(t) = φp(t; tk−1, x̃k−1, p̃k−1) −E [φp(t; tk−1, x̃k−1, p̃k−1)] (3.26)

It should be noted that the term involving the second derivative of the observation state relationship

(∂2h/∂x⃗2) is not included in this linearization because it contains δy⃗k ⋅δx̂k∣k, which is a second order

term that we assume to be zero for this linearized system. It should also be noted that the time

arguments for portions of the STM are excluded for convenience. When they are excluded it is

implied that it is evaluated from tk−1 to tk. The v⃗x and v⃗p terms account for the stochastic nature

of the solution flow.

Rearranging these equations we solve for the optimal estimate of the state at the a priori

epoch as shown in Eq. 3.27.

δx̂k−1∣k = [(Φpx − H̃
T
k R

−1
k H̃kΦxx) − (Φpp − H̃

T
k R

−1
k H̃kΦxp) P̄

−1
k−1∣k−1]

−1
(3.27)

× [(Φpp − H̃
T
k R

−1
k H̃kΦxp) (p̃k−1 − P̄

−1
k−1∣k−1δx̄k−1∣k−1)

− [p̃k + v⃗p(tk) + H̃
T
k R

−1
k (δy⃗k − H̃kv⃗x(tk))]]

Further rearranging this solution through application of the Schur Identity results in the

solution defined in Eqs. 3.28 - 3.31

δx̂k−1∣k = [I + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx] δx̄k−1∣k−1 +Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]

+ [P̄k−1∣k−1 (ΦxxP̄k−1∣k−1 −Φxp)
−1
−Lk−1H̃k]Pk∣k−1 (p̃k + v⃗p(tk)) (3.28)

− [I + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx −Lk−1H̃k (Φxx +Pk∣k−1Φpx)] P̄k−1∣k−1p̃k−1

Lk−1 = (ΦppP̄
−1
k−1∣k−1 −Φpx)

−1
H̃T
k (Rk + H̃kPk∣k−1H̃

T
k )

−1
(3.29)

δx̄k∣k−1 = (Φxx +Pk∣k−1Φpx) δx̄k−1∣k−1 (3.30)

Pk∣k−1 = (ΦxxP̄k−1∣k−1 −Φxp) (Φpp −ΦpxP̄k−1∣k−1)
−1

(3.31)

Existence of this solution requires that the three matrices shown below are nonsingular in

addition to the matrices that are defined to be nonsingular in the problem statement (e.g. Rk,
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P̄k−1∣k−1, and Q̃(t)).

∣Rk + H̃kPk∣k−1H̃
T
k ∣ /= 0

∣Φpp −ΦpxP̄k−1∣k−1∣ /= 0

∣ΦxxP̄k−1∣k−1 −Φxp∣ /= 0

The first matrix is invertible under the condition that Pk∣k−1 is symmetric positive definite.

This is because the first term is symmetric positive definite by construction, and the second term

is at least semi-positive definite with this condition, thus the sum may be easily shown to be

symmetric positive definite. The next two matrices are used to calculate Pk∣k−1 in a way that they

both are invertible if Pk∣k−1 is invertible. As such, proving arbitrary solution existence only requires

demonstrating Pk∣k−1 is a symmetric positive definite matrix.

To demonstrate that this matrix is symmetric positive definite we express it as a function

with the measurement time as the dependent variable t.

P(t∣tk−1) = (Φxx(t, tk−1)P̄k−1∣k−1 −Φxp(t, tk−1)) (Φpp(t, tk−1) −Φpx(t, tk−1)P̄k−1∣k−1)
−1

(3.32)

Taking the derivative of this expression, we obtain its dynamical equation as shown below.

Ṗ(t∣tk−1) =Axx(t)P(t∣tk−1) +P(t∣tk−1)Axx(t)
T (3.33)

+B(t)Q̃(t)B(t)T +P(t∣tk−1)Apx(t)P(t∣tk−1)

This dynamical equation is identical to a matrix Ricatti differential equation. Futhermore, we know

its initial condition via Eq. 3.32 (P(t∣tk−1) = P̄k−1∣k−1). As the solution to a matrix Riccati equation

with a symmetric matrix for an initial condition, P(t∣tk−1) is guaranteed to be symmetric for all

time. Given the initial condition is positive definite, and Q̃(t) also has this requirement, P(t∣tk−1)

is also guaranteed to be a positive definite matrix for all time beyond tk−1 [14]. Having proven this

property, we have proven solution existence for arbitrary inputs. ∎

To this point we have derived the Nonlinear OCBE, and demonstrated its existence given

certain conditions. In its implicit formulation there is no analytical solution for the estimates or
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their uncertainties. To find an analytical solution, we will derive a linear version of the estimator

in the following section.

3.3 The Generalized Linear OCBE

With no analytical solution to the Nonlinear OCBE, a linearized version of the estimator

provides a means to solve the necessary equations and calculate the uncertainty on the estimates.

The GL-OCBE is a version of the OCBE linearized about an arbitrary initial state and initial

adjoint with nominal trajectories defined in Theorem 3.1. As such, this linear estimator may be

iterated until converging on the nonlinear solution. In this section we summarize this estimator

and analyze the terms within it. A derivation of the GL-OCBE is provided in Appendices A and

B.

3.3.1 Equations of the GL-OCBE

In this section we formally define the equations of the GL-OCBE including the time update

equations, measurement update equations, control estimates, and the estimate uncertainties. An

analysis of what these equations mean and how they operate is provided in the following section.

Definition 3.3 (Generalized Linear Optimal Control Based Estimator): The linear estimator

that satisfies the cost function of interest with arbitrary initial nominal state and adjoint (as defined

in Theorem 3.1) satisfies the equations given in this definition.

First, Eqs. 3.34 - 3.36 define the time update step of the estimator. These defined values are

referred to as the propagated a priori state, the propagated a priori state quasi-covariance, and the

propagated a priori state covariance, respectively.

δx̄k∣k−1 = (Φxx +Pk∣k−1Φpx) δx̄k−1∣k−1 (3.34)

Pk∣k−1 = (ΦxxP̄k−1∣k−1 −Φxp) (Φpp −ΦpxP̄k−1∣k−1)
−1

(3.35)
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˙̄P (t∣tk−1) = [Axx(t) +P(t∣tk−1)Apx(t)] P̄ (t∣tk−1) + P̄ (t∣tk−1) [Axx(t) +Apx(t)P(t∣tk−1)]
T (3.36)

+B(t)Q̃(t)B(t)T

The latter of these equations is a dynamical equation that must be solved by integration from the

a priori epoch to the measurement epoch with the a priori state covariance (P̄k−1∣k−1) as the initial

condition.

Next, we define the measurement update equations. These equations incorporate information

from the given measurement and update the state and adjoint estimates as a result. The equations

defining the state estimate at the a priori epoch (δx̂k−1∣k) are defined in Eqs. 3.37 - 3.40. We will

refer to Ik−1 as the a priori OCBE state gain, Lk−1 as the a priori OCBE innovations gain and b̃k−1

as the a priori epoch state biasing term.

δx̂k−1∣k =Ik−1 (δx̄k−1∣k−1 + b̃k−1) +Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk∣tk−1))] (3.37)

Ik−1 = In×n + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx (3.38)

Lk−1 = (ΦppP̄
−1
k−1∣k−1 −Φpx)

−1
H̃T
k (Rk + H̃kPk∣k−1H̃

T
k )

−1
(3.39)

b̃k−1 = P̄k−1∣k−1 [Φ
−1
pp (p̃k + v⃗p(tk∣tk−1)) − p̃k−1] (3.40)

Equations 3.41 - 3.43 define the state estimate at the measurement epoch (δx̂k∣k). We will

refer to Lk as the OCBE gain and b̃k as the measurement epoch state biasing term.

δx̂k∣k = (δx̄k∣k−1 + b̃k + v⃗x(tk∣tk−1)) +Lk [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk∣tk−1))] (3.41)

Lk =Pk∣k−1H̃
T
k (Rk + H̃kPk∣k−1H̃

T
k )

−1
(3.42)

b̃k = Pk∣k−1 (p̃k + v⃗p(tk∣tk−1)) − (Φxx +Pk∣k−1Φpx) P̄k−1∣k−1p̃k−1 (3.43)

Equations 3.44 - 3.46 define the adjoint (δp̂k−1∣k) and control estimates (δû(t)). ũ(t) is the

nominal control trajectory that the control estimate is with respect to.

δp̂k−1∣k = P̄
−1
k−1∣k−1 (δx̄k−1∣k−1 − δx̂k−1∣k) − p̃k−1∣k (3.44)
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δû(t) = [w⃗(t) − Q̃(t)B(t)T (v⃗p(t∣tk−1) −Φpp(t, tk−1)p̃k−1)] (3.45)

− Q̃(t)B(t)T [(Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) δx̂k−1∣k +Φpp(t, tk−1)P̄

−1
k−1∣k−1δx̄k−1∣k−1]

ũ(t) = −Q̃(t)B(t)TE [φp(t; tk−1, x̃k−1, p̃k−1)] +E [ū(t)] (3.46)

Finally, the covariances of the state estimates at the a priori and measurement epochs are

defined in Eqs. 3.47 and 3.48, respectively.

P̂k−1∣k =Ik−1P̄k−1∣k−1I
T
k−1 +Lk−1 (Rk + H̃kP̄k∣k−1H̃

T
k )LTk−1 (3.47)

+ Ik−1P̄k−1∣k−1Φ−1
pp (∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ)Φ−T
pp P̄k−1∣k−1I

T
k−1

− Ik−1P̄k−1∣k−1 [Φxx +Pk∣k−1Φpx]
T
H̃T
k L

T
k−1 −Lk−1H̃k [Φxx +Pk∣k−1Φpx] P̄k−1∣k−1I

T
k−1

− Ik−1P̄k−1∣k−1Φ−1
pp [∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

TdτPk∣k−1] H̃
T
k L

T
k−1

− Ik−1P̄k−1∣k−1Φ−1
pp [∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦxx(t, τ)

Tdτ] H̃T
k L

T
k−1

−Lk−1H̃k [Pk∣k−1∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]Φ−T
pp P̄k−1∣k−1I

T
k−1

−Lk−1H̃k [∫

t

tk−1
Φxx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]Φ−T
pp P̄k−1∣k−1I

T
k−1

P̂k∣k = (I −LkH̃k) P̄k∣k−1 (I −LkH̃k)
T
+LkRkL

T
k (3.48)

The covariance of the control estimate is also defined in Appendix B (Eq. B.38). ∎

This fully defines the GL-OCBE. All linear estimates are taken with respect to the nominal

state and adjoint trajectories as defined in Theorem 3.1. In the next section, an analysis and

discussion of these equations is provided in order to promote a fuller understanding of how this

estimator operators.

3.3.2 Analysis of GL-OCBE

As defined in Definition 3.3, the GL-OCBE has a somewhat similar form to a Kalman Filter,

but it also has many additional terms. In this section we will focus on what these terms mean, and

what their purposes are.
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Starting with the time update, the form of the propagated a priori state is quite different than

what is seen in a Kalman Filter. It includes an additional term to account for the non-zero adjoint

term. The propagated a priori quasi-covariance is covered in detail in Appendix B. This matrix is

symmetric positive definite and has a very similar dynamical equation to the true covariance, but

the nonzero nominal adjoint introduces slight differences. These two matrices are actually identical

for a ballistic nominal adjoint (as discussed in the BL-OCBE development).

In the calculation of the propagated a priori state covariance there are two random variables

that have not been fully analyzed - v⃗x(tk) and v⃗p(tk). These were defined in Theorem 3.1, but this

definition did not include a discussion of their stochastic properties. Both values are zero mean

by definition, but their covariances are not easily determined due to the nonlinear nature of the

solution flow equations. Given this is a linearization of the nonlinear OCBE, we also linearize these

random variables. The linearization of the equations of motion are given below with the solution

given in Eq. 3.50.

δφ̇x(t) = φ̇x(t; tk−1, x⃗k−1, p⃗k−1) − ˙̃x(t) ≈Axx(t)δx⃗(t) +Axp(t)δp⃗(t) +B(t)w⃗(t) (3.49)

δφ̇p(t) = φ̇p(t; tk−1, x⃗k−1, p⃗k−1) − ˙̃p(t) ≈Apx(t)δx⃗(t) +App(t)δp⃗(t)

δφx(t) =Φxx(t, tk−1)δx⃗k−1 +Φxp(t, tk−1)δp⃗k−1 + ∫

t

tk−1
Φxx(t, τ)B(τ)w⃗(τ)dτ (3.50)

δφp(t) =Φpx(t, tk−1)δx⃗k−1 +Φpp(t, tk−1)δp⃗k−1 + ∫

t

tk−1
Φpx(t, τ)B(τ)w⃗(τ)dτ

Because the solution flow and the nominal trajectory have identical initial conditions the δx⃗k−1

and δp⃗k−1 are both zero, thus we define the random variables v⃗x(t) and v⃗p(t) solely in terms of the

random acceleration as shown below.

v⃗x(t∣tk−1) =∫

t

tk−1
Φxx(t, τ)B(τ)w⃗(τ)dτ (3.51)

v⃗p(t∣tk−1) =∫

t

tk−1
Φpx(t, τ)B(τ)w⃗(τ)dτ

When evaluated at tk, these values are abbreviated as v⃗x(tk) and v⃗p(tk), respectively. Knowing

these values we may calculate the propagated a priori state covariance. This calculation is done in

Appendix B.
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The measurement update equations all have similar forms to the Kalman Filter as well. The

state estimate at the measurement epoch has the exact same form - the propagated a priori state

added to the filter innovations that are weighted by a gain matrix. The differences include the

terms added to the propagated a priori state and the form of the gain matrix. Unlike the Kalman

filter the propagated a priori state is combined with a biasing term (b̃k) and a state propagation

error term (v⃗x(tk)). The biasing term represents assumed dynamic mismodeling due to a nonzero

nominal adjoint. Making the assumption that the OCBE is an unbiased estimator means that this

biasing term makes the adjustments to the propagated a priori state to ensure that it is not biased

due to mismodeled dynamics (Eq. 3.52).

δx⃗∗k =E [δx̂k∣k] (3.52)

=E [δx̄k∣k−1] +E [b̃k]

The other term added to the propagated a priori state accounts for the dynamic uncertainty. It is

effectively a term that accounts for process noise explicitly and automatically, rather than having to

be enforced in a Kalman Filter. More details on this term are provided in the BL-OCBE discussion.

The OCBE gain is also slightly different than the Kalman Gain. It has an almost identical

form, but instead of using the propagated a priori state covariance, the OCBE gain uses the

propagated a priori state quasi-covariance. When these two matrices are equal the two gains

are equal (assuming the Kalman gain has an equivalent amount of process noise included). This

situation is discussed in the following BL-OCBE development.

Because the Kalman Filter has no state estimate at the a priori epoch it is necessary to

compare the OCBE state estimate at the a priori epoch to a smoothed Kalman estimate. As with

the measurement epoch estimate, if we make the assumption that the estimate is unbiased, then

the biasing term is meant to account for assumed dynamic uncertainty.

δx⃗∗k−1 =E [δx̂k−1∣k] (3.53)

=Ik−1 (E [δx̄k−1∣k−1] +E [b̃k−1])
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It should be noted that the assumption was that the a priori state estimate was also unbiased

(E [δx̄k−1∣k−1] = δx⃗
∗
k−1). For both of these assumptions to be true we also require the following:

E [b̃k−1] = I
−1
k−1 (In×n − Ik−1) δx⃗

∗
k−1. It is interesting to note that these combined assumptions and

conditions lead to the following:

δx⃗∗k = Φxxδx⃗
∗
k−1 −Φxpp̃k−1 (3.54)

This important result tells us that our unbiased assumptions are valid. Essentially, the odd form

of the propagated a priori state is effectively balanced against the biasing terms to ensure that the

true states lie along the same ballistic trajectory. This is indicated by the fact that the adjoint term

is equal and opposite the nominal adjoint, thus nullifying it in a linear sense. Hence the resulting

truth trajectory is ballistic and continuous.

With this assumption defined, the smoothed Kalman estimate and the OCBE state estimate

at the a priori epoch have similar forms. it involves the summation of the a priori state estimate

and a weighted version of the innovations, which could be reformed into a more typical smoother

formulation (see BL-OCBE results). Given that the Kalman Filter has nothing like a nominal

adjoint trajectory, we cannot make direct claims of equivalence, but we can qualitatively say they

act the same. Both estimates take information from one measurement in the future and output the

state estimate that minimizes a meaningful cost - minimum variance for the Kalman Filter, and

the OCBE cost function for the OCBE.

The final estimates associated with this estimator are the adjoint estimate at the a priori

epoch and the control estimate. As might be expected from the result of Eq. 3.54 the true adjoint

deviations according to this estimator should be equal and opposite the nominal adjoint, thus

nullifying the nonlinear estimate. This is exactly what we find. The mean of the nonlinear adjoint

estimate is zero leading to a zero mean control estimate, thus the estimator assumes the dynamics

are properly modeled. When errors are present, though, the estimator estimates a nonzero control

policy to account for dynamic mismodeling. This makes the estimator robust to these mismodelings.

Analysis of the GL-OCBE equations led to important insights. Most important is that the
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estimator is unbiased, the true states are assumed ballistically connected, and that the expected

value of the adjoint is zero thus resulting in the ballistic trajectory. This makes sense given the

form of the cost function. It penalizes deviation from a ballistic trajectory, thus it should favor this

solution. In the next section we analyze a simplification of these equations known as the Ballistic

Linear OCBE. This requires setting the nominal adjoint to be zero. The resulting estimator has

many desirable properties that are far more explicit, since it is far more comparable to the Kalman

Filter.

3.4 The Ballistic Linear OCBE

The BL-OCBE is a simplified version of the GL-OCBE that requires the nominal adjoint

trajectory to be ballistic (i.e. zero for all time). Because of this, the estimator cannot be iterated

to solve the nonlinear estimation problem. What is lost in nonlinearity is gained in ideal linear

estimation properties, though. This section outlines this version of the OCBE and its special

properties. It starts with a discussion of properties that result from linearization about a ballistic

nominal trajectory. Next, the equations of the BL-OCBE are obtained by simplification of the

GL-OCBE equations. Finally, we discuss the properties that make this an ideal estimator in many

respects including its noise propagation properties, its smoothing properties, and its relation to the

Kalman Filter.

3.4.1 Ballistic Properties

By specifying the nominal adjoint trajectory to be ballistic certain properties are obtained.

The most obvious property is that the nominal adjoints are zero, thus the bias terms in the GL-

OCBE are both zero and the stochastic terms within them will also be shown to be deterministically

zero for this estimator. Beyond this there are some ballistic properties associated with the linearized

system’s STM. These properties are developed in the following Lemma and proof.

Lemma 3.1 (State Transition Matrix Quadrant Relations): When modeled about a ballistic

nominal trajectory (Eq. 3.55), the four quadrants of the full state transition matrix (state and
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adjoint) are related as shown in Eq. 3.56 where t, τ ∈ R.

x̃(t) = E [φx(t; tk−1, x̃k−1, p̃k−1 = 0⃗)] (3.55)

p̃(t) = E [φp(t; tk−1, x̃k−1, p̃k−1 = 0⃗)] = 0⃗

Φpx(t, τ) = 0n×n

Φpp(t, τ)Φxx(t, τ)
T = In×n (3.56)

Φxp(t, τ)Φxx(t, τ)
T = (Φxp(t, τ)Φxx(t, τ)

T )
T

Proof : Recalling Eqs. 2.14 and 2.15, we will probe the dynamics of the STM quadrants on

a ballistic nominal trajectory in order to demonstrate these properties. The specific A(t) matrix

for the system we have defined so far is given in Eq. 3.57.

A(t) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂f⃗
∂x⃗ −B(t)Q̃(t)B(t)T

− ∂2

∂x⃗2
(f⃗T p⃗) −

∂f⃗
∂x⃗

T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRRRRRR(t,x̃(t),p̃(t))

(3.57)

Using these equations we can solve for Φ̇px, which allows us to solve for the matrix for all

time:

Φ̇px(t, τ) = −
∂2

∂x⃗2
(f⃗T p⃗)∣

(t,x̃(t),p̃(t))

Φxx(t, τ) −
∂f⃗

∂x⃗
∣

T

(t,x̃(t))

Φpx(t, τ) (3.58)

The first term in this dynamical equation is zero for all time because the nominal adjoint is

equal to zero on a ballistic trajectory, which yields Eq. 3.59. The solution to this type of ODE is

given by Eq. 3.60, where the dynamics of the matrix Ω(t, τ) are given by Eq. 3.61.

Φ̇px(t, τ) +
∂f⃗

∂x⃗
∣

T

(t,x⃗(t))

Φpx(t, τ) = 0n×n (3.59)

Φpx(t, τ) = Ω(t, τ)Φpx(τ, τ) (3.60)

Ω̇(t, τ) = −
∂f⃗

∂x⃗
∣

T

(t,x⃗(t))

Ω(t, τ) (3.61)

The initial conditions for Φpx are zero since it is an off-diagonal portion of the STM (Φpx(τ, τ) =

0n×n). Thus, from Eq. 3.60 we conclude Φpx(t, τ) = 0n×n, ∀t, τ ∈ R. Subbing this result into Eq.
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2.16 yields the required quadrant relations. The first two of the expressions are obtained simply.

The third expression in Eq. 3.56 is obtained by observing that Φpp(t, τ)
T = Φxx(t, τ)

−1. Making

this substitution and rearranging yields the final desired result. ∎

These STM properties lead to many simplifications in the GL-OCBE equations. The next

section will present these simplified equations, which define the BL-OCBE.

3.4.2 Equations of the BL-OCBE

The equations of the BL-OCBE are obtained by applying the ballistic simplifications to the

GL-OCBE equations. We also specifically specify that the inputs are Gaussian, thus fixing their

higher order moments. This provides more room for comparison with the Kalman Filter.

Having defined all of the inputs into the BL-OCBE and the STM properties for ballistic

nominal trajectory, we can proceed with defining the equations of the BL-OCBE. This definition

is given below.

Definition 3.4 (Ballistic Linear Optimal Control Based Estimator): The linear estimator

that satisfies the cost function of interest with a ballistic nominal trajectory satisfies the equations

in this definition.

Equations 3.62 and 3.63 define the time update step of the estimator. The propagated the

a priori state estimate and its covariance to the measurement epoch along a ballistic nominal

trajectory.

δx̄k∣k−1 = Φxxδx̄k−1∣k−1 (3.62)

P̄k∣k−1 = ΦxxP̄k−1∣k−1ΦT
xx −ΦxpΦ

T
xx (3.63)

Equations 3.64 and 3.65 define the state estimate at the a priori epoch.

δx̂k−1∣k = δx̄k−1∣k−1 +Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (3.64)

Lk−1 = P̄k−1∣k−1ΦT
xxH̃

T
k (Rk + H̃kP̄k∣k−1H̃

T
k )

−1
(3.65)
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Equations 3.66 and 3.67 define the state estimate at the measurement epoch.

δx̂k∣k = (δx̄k∣k−1 + v⃗x(tk)) +Lk [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (3.66)

Lk = P̄k∣k−1H̃
T
k (Rk + H̃kP̄k∣k−1H̃

T
k )

−1
(3.67)

Equations 3.68 - 3.70 define the adjoint estimate at the a priori epoch, the control estimate,

and the nominal control policy, respectively.

δp̂k−1∣k = −P̄
−1
k−1∣k−1Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (3.68)

δu⃗(t) = −Q̃(t)
∂f⃗

∂u

T

Φpp(t, tk−1)δp̂k−1∣k + w⃗(t) (3.69)

ũ(t) = E [ū(t)] (3.70)

Both of these state estimates are unbiased with known covariances as shown below.

E(δx̂k−1∣k) = E(δx̄k−1∣k−1) +Lk−1 (E(δy⃗k − H̃kδx̄k∣k−1)) = δx⃗
∗
k−1 (3.71)

E(δx̂k∣k) = E(δx̄k∣k−1) +Lk (E(δy⃗k − H̃kδx̄k∣k−1)) = δx⃗
∗
k (3.72)

P̂k−1∣k = P̄k−1∣k−1 −Lk−1 (Rk + H̃kP̄k∣k−1H̃
T
k )LTk−1 (3.73)

P̂k∣k = (I −LkH̃k) P̄k∣k−1 (I −LkH̃k)
T
+LkRkL

T
k (3.74)

Having defined the estimates and estimate uncertainties, we have fully defined the Ballistic

Linear Optimal Control Based Estimator. ∎

In this definition there is no Pk∣k−1 matrix. This is because for the BL-OCBE, this matrix is

equivalent to the covariance of the propagated a priori state (P̄k∣k−1). A proof of this is provided

in following section along with discussions of other properties of the estimator.
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3.4.3 Special Properties of the BL-OCBE

The BL-OCBE has special properties that are significant with regards to estimation theory.

In this section we analyze three of those important properties. First, we discuss the propagation

a priori state uncertainty in the BL-OCBE. Next, a proof relating to the smoothing properties of

the estimator is provided. Finally, we draw important comparisons between the BL-OCBE and the

Kalman Filter.

3.4.3.1 Noise Propagation

Without proof, in Eq. 3.63 we quantified the uncertainty of the propagated a priori state

deviation effectively equating Pk∣k−1 and P̄k∣k−1. In this section we provide proof for this statement,

and demonstrate that this propagated uncertainty is identical to the inclusion of continuous process

noise. This proof and discussion is given in the following Lemma.

Lemma 3.2 (Noise Propagation in the BL-OCBE):

In the BL-OCBE the matrix Pk∣k−1 is equivalent to the covariance of the propagated a priori

state (P̄k∣k−1). Additionally, the assumed dynamic uncertainty (Q̃(t)) is propagated within this

covariance in a manner that is identical to continuous process noise.

Proof : First we must demonstrate that the matrix Pk∣k−1 is equivalent to the covariance of

δx̄k∣k−1. In the BL-OCBE the equations for these two properties are given below as functions of

time to preserve the continuous nature of the system.

δx̄(t∣tk−1) + v⃗x(t∣tk−1) =Φxx(t, tk−1)δx̄k−1∣k−1 + ∫

t

tk−1
Φxx(t, τ)B(τ)w⃗(τ)dτ (3.75)

P(t∣tk−1) =Φxx(t, tk−1)P̄k−1∣k−1Φxx(t, tk−1)
T
−Φxp(t, tk−1)Φxx(t, tk−1)

T

Differentiating these expressions with respect to time, and making the proper STM dynamics

substitutions we obtain the following dynamics of these two values as shown below.

δ ˙̄x(t∣tk−1) ˙⃗vx(t∣tk−1) =
∂f⃗

∂x⃗
∣
(t,x̃(t))

δx̄(t∣tk−1) +B(t)w⃗(t) (3.76)
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Ṗ(t∣tk−1) =
∂f⃗

∂x⃗
∣
(t,x̃(t),p̃(t))

P(t∣tk−1) +P(t∣tk−1)
∂f⃗

∂x⃗
∣

T

(t,x̃(t),p̃(t))

+B(t)Q̃(t)B(t)T (3.77)

The covariance of the propagated a priori state, and its dynamical equation are defined below.

P̄ (t∣tk−1) = E [(δx̄(t∣tk−1) −E[δx̄(t∣tk−1)]) (δx̄(t∣tk−1) −E[δx̄(t∣tk−1)])
T
] (3.78)

˙̄P (t∣tk−1) =E [(δ ˙̄x(t∣tk−1) −E[δ ˙̄x(t∣tk−1)]) (δx̄(t∣tk−1) −E[δx̄(t∣tk−1)])
T (3.79)

+ (δx̄(t∣tk−1) −E[δx̄(t∣tk−1)]) (δ ˙̄x(t∣tk−1) −E[δ ˙̄x(t∣tk−1)])
T
]

=
∂f⃗

∂x⃗
∣
(t,x̃(t),p̃(t))

P̄ (t∣tk−1) + P̄ (t∣tk−1)
∂f⃗

∂x⃗
∣

T

(t,x̃(t),p̃(t))

+B(t)E [w⃗(t)δx̄(t∣tk−1)
T ] +E [δx̄(t∣tk−1)w⃗(t)T ]B(t)T

Following the development in Ref. [83], this covariance equation of motion may reduced to form

shown below.

˙̄P (t∣tk−1) =
∂f⃗

∂x⃗
∣
(t,x̃(t),p̃(t))

P̄ (t∣tk−1) + P̄ (t∣tk−1)
∂f⃗

∂x⃗
∣

T

(t,x̃(t),p̃(t))

+B(t)Q̃(t)B(t)T (3.80)

This dynamical equation (with solution given in Eq. 3.81) is identical to the matrix equation of

motion in Eq. 3.77. Given the equivalency in dynamics and that the initial conditions for the

matrices are equivalent (P(tk−1∣tk−1) = P̄ (tk−1∣tk−1) = P̄k−1∣k−1), the result is that the matrices are

equal to one another. Thus Pk∣k−1 is the covariance of the propagated a priori state: Pk∣k−1 = P̄k∣k−1.

Beyond this equivalence, we also conclude that the equation of motion for the BL-OCBE

propogated a priori state is fully equivalent to the covariance dynamical equation for a Kalman

Filter with continuous process noise [83]. Given that these equations have identical initial conditions

(P̄ (tk−1∣tk−1) = P̄k−1∣k−1), it means that the covariances are equivalent for all time. Thus, the

propagated state covariance for the BL-OCBE is identical to propagated state covariance for a

Kalman Filter with process noise defined by the same dynamic uncertainty (Q̃(t)). The solution

to this covariance equation of motion is given below, which is fully equivalent to the BL-OCBE

covariance equation in Eq. 3.63.

P̄k∣k−1 = Φxx(tk, tk−1)P̄k−1∣k−1Φxx(tk, tk−1)
T
+ ∫

tk

tk−1
Φxx(t, τ)

∂f⃗

∂u⃗
Q̃(τ)

∂f⃗

∂u⃗

T

ΦT
xx(t, τ)dτ (3.81)
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∎

As shown, this algorithm automatically generates continuous dynamic noise via the form of

its cost function. This noise is guaranteed to be positive semi-definte due to restrictions on Q̃(t)

(which is symmetric positive definite), and the symmetric form of Eq. 3.81.

It should be noted that the BL-OCBE achieves this continuous process-noise equivalent dy-

namic uncertainty via solution of a simple linear dynamical equation in the STM. Often Kalman

Filter algorithms will make a discrete process noise assumption to simplify propagation of state

uncertainty, but the results are not equivalent ([9],[81],[82]). The BL-OCBE automatically com-

putes continuous process noise as part of the system. The user only needs to select the assumed

dynamic uncertainty matrix (Q̃(t)), then the system automatically accounts for the effect on state

propagation via the STM equations of motion.

Having established the noise propagation properties of this estimator, the next property to

discuss is the special property associated with the state estimate at the a priori epoch. These are

discussed in the next subsection.

3.4.3.2 Smoothing

The a priori state estimate that comes out of the BL-OCBE is extra information that is

not provided by the standard Kalman Filter. However, a complimentary algorithm to the Kalman

Filter offers a basis for comparison. Smoothing algorithms take information from later time epochs

and propagate it backward to obtain a trajectory with full information content at every epoch. In

terms of optimality, a smoothed state estimate maximizes the probability density function at the a

priori epoch conditioned on measurements through the final time. In this section we will establish

an equivalence between the BL-OCBE a priori state estimates and the equivalent smoothed Kalman

estimate. This will lead to an additional algorithm that fully smooths the state estimates across

multiple epochs for the BL-OCBE as discussed later in this chapter.

Lemma 3.3 (One-step Smoother Equivalence): The update to the state estimate at the a

priori epoch for the BL-OCBE (δx̂k−1∣k) is equivalent to the state estimate update for a Kalman
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algorithm when applying a smoothing algorithm given the same inputs. This is equivalent to stating

that the state estimate at the a priori epoch for the BL-OCBE is the state estimate that maximizes

the state probability density function at tk−1 conditioned on measurements through time tk.

Proof : To start, we define the smoothed estimate that results from the smoothing algorithm

applied to the Kalman filter in Eqs. 3.82 - 3.84.

δx̂k−1∣k = δx̂k−1∣k−1 + Sk−1 [δx̂k∣k −Φxxδx̂k−1∣k−1] (3.82)

Sk−1 = Pk−1∣k−1ΦT
xxP

−1
k∣k−1 (3.83)

P̂k−1∣k = P̂k−1∣k−1 + Sk−1 (P̂k∣k − P̄k∣k−1)S
T
k−1 (3.84)

Restating Eq. 3.64, with some slight modifications we obtain the result in Eq. 3.85.

δx̂k−1∣k = δx̄k−1∣k−1 + P̄k−1∣k−1ΦT
xxP̄

−1
k∣k−1 [Lk (δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk)))] (3.85)

The portion of this equation in brackets may be substituted for a rearranged form of Eq.

3.66 as shown in Eq. 3.86.

δx̂k−1∣k = δx̄k−1∣k−1 + P̄k−1∣k−1ΦT
xxP̄

−1
k∣k−1 [δx̂k∣k − δx̄k∣k−1 − v⃗x(tk)] (3.86)

Equation 3.86 is identical to Eqs. 3.82 and 3.83 a side from the fact that the OCBE process

noise term is explicit - the Kalman filter term is built into the terms so they are still equivalent. This

demonstrates equivalence in the state estimates at the a priori epoch. Next, we show equivalence in

the covariance for completeness. Rearranging both Eqs. 3.73 and 3.74 we obtain the results shown

below.

P̂k−1∣k = P̄k−1∣k−1 − Sk−1Lk (Rk + H̃kP̄k∣k−1H̃
T
k )LTk S

T
k−1 (3.87)

P̂k∣k = P̄k∣k−1 −Lk (Rk + H̃kP̄k∣k−1H̃
T
k )LTk (3.88)
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Rearranging Eq. 3.88 and plugging it into Eq. 3.87, we obtain the result shown in Eq. 3.89.

This is identical to the stated uncertainty from the smoothed Kalman estimate (Eq. 3.84), which

demonstrates their equivalency.

P̂k−1∣k = P̄k−1∣k−1 + Sk−1 (P̂k∣k − P̄k∣k−1)S
T
k−1 (3.89)

∎

To this point we have identified several similarities between the BL-OCBE and the Kalman

Filter. In the next section we will formalize this by officially stating the relation between these two

algorithms.

3.4.3.3 Generalization of the Kalman Filter

The Kalman Filter is the standard linear sequential estimator for a dynamical system that

optimizes a number of cost functions including minimum variance and weighted least squares. The

optimality of its solution is summarized as the best (minimum variance), linear, unbiased (mean

of estimate distribution is truth) state estimate. While we have demonstrated the the BL-OCBE

optimizes our cost function of interest and this cost function has strong physical and mathematical

significance, it would be valuable to compare this optimality to more standard estimation techniques

(i.e. the Kalman Filter) or even demonstrate equivalence. In this section we will demonstrate an

equivalence between the BL-OCBE and the Kalman Filter with process noise.

Theorem 3.2 (BL-OCBE Equivalence to Kalman Filter): The state estimate at the mea-

surement epoch and its associated uncertainty from the BL-OCBE are equivalent to the Kalman

Filter solutions when provided identical inputs. This is equivalent to saying the BL-OCBE outputs

the minimum variance, unbiased state estimate at the measurement epoch.

Proof : To start we define the Kalman filter estimate with process noise in the notation of

this paper through Eqs. 3.90-3.94.

δx̂k∣k = δx̄k∣k−1 +Kk (δy⃗k − H̃kδx̄k∣k−1) (3.90)

P̂k∣k = (I −KkH̃k) P̄k∣k−1 (I −KkH̃k)
T
+KkRkK

T
k (3.91)
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Kk = P̄k∣k−1H̃
T
k (Rk + H̃kP̄k∣k−1H̃

T
k )

−1
(3.92)

δx̄k∣k−1 = Φxxδx̄k−1∣k−1 (3.93)

P̄k∣k−1 = ΦxxP̄k−1∣k−1ΦT
xx + ∫

tk

tk−1
Φxx(tk, τ)

∂f⃗

∂u⃗
Q̃(τ)

∂f⃗

∂u⃗

T

ΦT
xx(tk, τ)dτ (3.94)

Having proven that the Kalman propagated covariance is equivalent to the BL-OCBE propa-

gated covariance given the same inputs, it becomes apparent that the Kalman Gain (Kk) is identical

to the BL-OCBE Gain at the measurement epoch (Lk). Additionally because the state-state por-

tions of the STMs (Φxx) are equivalent between the two estimators (because Φpx(t, τ) = 0 from

Lemma 3.1), the propagated state deviations are also equal to one another (δx̄k∣k−1). Given these

equivalencies, the state estimate and uncertainty at the measurement epoch are equivalent between

both estimators. ∎

While these estimators are equivalent in their measurement epoch state estimates and have

the same optimality claims, the linear OCBE provides far more information. The estimator au-

tomatically accounts for dynamic uncertainty, estimates dynamic mismodeling, and estimates the

state at the a priori epoch automatically. As such we may define the BL-OCBE as a generalization

of the Kalman algorithm.

3.5 The OCBE Smoother

Given that the estimated control profiles are a highlight of this estimator, we aim to provide

optimal control estimates based on all available information over the entire trajectory. Additionally,

another goal for this estimator is to describe how optimal state estimates are connected in time.

While we accomplish this over a single observation gap, the algorithm as presented to this point

includes jump discontinuities at each measurement epoch due to the updated a priori state estimate.

This problem is erased by application of a full-smoothing algorithm as developed in this section.

The development starts with the definition of the smoother for the nonlinear OCBE. After this,

separate treatments of this smoother applied to the GL-OCBE and BL-OCBE are provided.
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3.5.1 Nonlinear OCBE Full Smoother

A smoother takes the latest measurement and applies that information to all previous esti-

mation epochs in order to obtain trajectories that have the highest information content. In order

to form a proper smoothing algorithm a cost function must be designed to take advantage of the

available pieces of information: (1) the previous estimate at the time of interest and its associated

covariance (tk−1, x̂k−1∣k−1, P̂k−1∣k−1) and (2) knowledge of the dynamics and the level of mismodel-

ing. As with the OCBE the OCBE smoother estimates a fictitious control policy to account for

mismodeling using the same a priori values as the original estimator (ū(t), Q̃(t)).

In order to ensure a continuous state trajectory, the smoother should also be designed such

that the smoothed states are required to be connected. This requirement results in a recursive algo-

rithm that starts at the final measurement epoch, smooths to the previous measurement epoch, and

continues until reaching the beginning of the estimation arc. At each step the following constraint

is enforced:

x̂k∣l = φx(t; tk−1, x̂k−1∣l, p̂k−1∣l) (3.95)

This constraint enforces the continuous state trajectory constraint for a measurement arc with l

measurements. It should be noted that the smoothed state at tk has the associated covariance

matrix P̂k∣l. In the following definition we formally define a smoother cost function with the desired

properties we have discussed here, and we define the necessary conditions for smoother optimality.

Definition 3.5 (Nonlinear OCBE Full Smoothing Algorithm): Given inputs tk−1, x̂k−1∣k−1,

P̂k−1∣k−1, tk, x̂k∣l, P̂k∣l, ū(t), and Q̃(t) as previously defined the Nonlinear OCBE Full Smoothing

Algorithm is defined as the state and controls that minimize the cost function defined below.

Jsmooth(x⃗k−1, u⃗(t)) =
1

2
∫

tk

tk−1
(u⃗(τ) − ū(τ))T Q̃(τ)−1

(u⃗(τ) − ū(τ)))dτ (3.96)

+
1

2
(x̂k−1∣k−1 − x⃗k−1)

T
P̂ −1
k−1∣k−1 (x̂k−1∣k−1 − x⃗k−1)

This cost function is constrained by state dynamics as defined for the OCBE, and that the state at

tk−1 (x⃗k−1) and the control policy (u⃗(t)) should be chosen such that when propagated they result
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in the smoothed state at tk for a state with l observation epochs (x̂k∣l).

The optimal solutions to this cost function (x̂k−1∣l and p̂k−1∣l) are defined as solutions that

satisfy the following two necessary conditions for smoother optimality.

F1(x̂k−1∣l, p̂k−1∣l) = p̂k−1∣l − P̂
−1
k−1∣k−1 (x̂k−1∣k−1 − x̂k−1∣l) = 0⃗ (3.97)

F2(x̂k−1∣l, p̂k−1∣l) = x̂k∣l − φx(t; tk−1, x̂k−1∣l, p̂k−1∣l) = 0⃗ (3.98)

Once solved, the optimal control policy may be obtained from the state and adjoint trajectories

via the results of the Pontryagin Minimum Principle (Eq. 3.9). ∎

Just like the nonlinear OCBE, there is no analytical solution to this optimization problem,

and no means to quantify uncertainty in the estimates. As such, we will pursue linear solutions to

this problem.

3.5.2 GL-OCBE Full Smoother

As was the case with the GL-OCBE, the GL-OCBE full smoother is a linearization of the

nonlinear algorithm about arbitrary state and adjoint trajectories. Defining the linearization the

same as we did for the GL-OCBE, the linearized necessary conditions are defined below.

F⃗1(x̂k−1∣l, p̂k−1∣l) ≈F⃗1(x̃k−1, p̃k−1) +
∂F⃗1

∂x̂k−1∣l

∣

(x̃k−1,p̃k−1)
δx̂k−1∣l +

∂F⃗1

∂p̂k−1∣l

∣

(x̃k−1,p̃k−1)
δp̂k−1∣l = 0⃗ (3.99)

F⃗2(x̂k−1∣l, p̂k−1∣l) ≈F⃗2(x̃k−1, p̃k−1) +
∂F⃗2

∂x̂k−1∣l

∣

(x̃k−1,p̃k−1)
δx̂k−1∣l +

∂F⃗2

∂p̂k−1∣l

∣

(x̃k−1,p̃k−1)
δp̂k−1∣l = 0⃗ (3.100)

Subbing in all necessary values, the following linear necessary conditions are obtained. In these

equations all values with a δ are relative to the nominal trajectory.

[p̃k−1 − P̂
−1
k−1∣k−1δx̂k−1∣k−1] + P̂

−1
k−1∣k−1δx̂k−1∣l + δp̂k−1∣l = 0⃗ (3.101)

[δx̂k∣l − v⃗x(tk)] −Φxxδx̂k−1∣l −Φxpδp̂k−1∣l = 0⃗ (3.102)
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Definition 3.6 (GL-OCBE Full Smoother Algorithm): The linear algorithm with arbitrary

initial state and adjoint (nominal trajectories defined by x̃(t) = E [φx(t; tk−1, x̃k−1, p̃k−1)] and p̃(t) =

E [φp(t; tk−1, x̃k−1, p̃k−1)], respectively) that minimizes the cost function defined in Definition 3.5

is called the GL-OCBE Full Smoother Algorithm. It is defined by the state, adjoint, and control

estimates given below.

δx̂k−1∣l =δx̂k−1∣k−1 + Sk−1 [δx̂k∣l − (Φxxδx̂k−1∣k−1 −Φxpp̃k−1 + v⃗x(tk))] (3.103)

Sk−1 = P̂k−1∣k−1 (ΦxxP̂k−1∣k−1 −Φxp)
−1

(3.104)

δp̂k−1∣l = −P̂
−1
k−1∣k−1Sk−1 [δx̂k∣l − (Φxxδx̂k−1∣k−1 −Φxpp̃k−1 + v⃗x(tk))] − p̃k−1 (3.105)

δû(t∣tl) = [w⃗(t) − Q̃(t)B(t)T (v⃗p(t∣tk−1) −Φpp(t, tk−1)p̃k−1)] (3.106)

− Q̃(t)B(t)T [(Φpx(t, tk−1) −Φpp(t, tk−1)P̂
−1
k−1∣k−1) δx̂k−1∣l +Φpp(t, tk−1)P̂

−1
k−1∣k−1δx̄k−1∣k−1]

ũ(t) = −Q̃(t)B(t)TE [φp(t; tk−1, x̃k−1, p̃k−1)] +E [ū(t)] (3.107)

The covariance associated with this smoothed state estimate (δx̂k−1∣l) is defined below.

P̂k−1∣l = P̂k−1∣k−1 + Sk−1 [P̂k∣l + P̄k∣k−1]S
T
k−1 − [Sk−1ΦxxP̂k−1∣k−1 + P̂k−1∣k−1ΦT

xxS
T
k−1] (3.108)

∎

The GL-OCBE smoother may be iterated to solve the nonlinear smoothing problem. As such

the linearization about the solution may be used to provide uncertainty estimates for the nonlinear

estimates. In the next section we will simplify this smoother by specifying the nominal adjoint to

be zero for all time (i.e. ballistic), thus creating the BL-OCBE Full Smoother Algorithm.

3.5.3 BL-OCBE Smoother

By applying the same ballistic simplifications that were defined for the BL-OCBE, we can

simplify the GL-OCBE Full Smoother into the BL-OCBE Full Smoother. This smoother is formally

defined in Definition 3.7.
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Definition 3.7 (BL-OCBE Full Smoother Algorithm): The linear algorithm with arbitrary

initial state (nominal state and adjoint trajectories defined by x̃(t) = E [φx(t; tk−1, x̃k−1, p̃k−1 = 0⃗)]

and p̃(t) = E [φp(t; tk−1, x̃k−1, p̃k−1 = 0⃗)] = 0⃗, respectively) and ballistic nominal adjoint (i.e. zero

for all time) that minimizes the cost function defined in Definition 3.5 is called the BL-OCBE Full

Smoother Algorithm. It is defined by the state, adjoint, and control estimates given below (where

P̄k∣k−1 is defined by Eq. 3.63).

δx̂k−1∣l =δx̂k−1∣k−1 + Sk−1 [δx̂k∣l − (Φxxδx̂k−1∣k−1 + v⃗x(tk))] (3.109)

Sk−1 = P̂k−1∣k−1ΦT
xxP̄

−1
k∣k−1 (3.110)

δp̂k−1∣l = −P̂
−1
k−1∣k−1Sk−1 [δx̂k∣l − (Φxxδx̂k−1∣k−1 + v⃗x(tk))] (3.111)

δû(t∣tl) = −Q̃(t)B(t)TΦpp(t, tk−1)P̂
−1
k−1∣k−1 [δx̄k−1∣k−1 − δx̂k−1∣l] + w⃗(t) (3.112)

ũ(t) = E [ū(t)] (3.113)

The covariance associated with this smoothed state estimate (δx̂k−1∣l) is defined below.

P̂k−1∣l = P̂k−1∣k−1 + Sk−1 [P̂k∣l − P̄k∣k−1]S
T
k−1 (3.114)

∎

These equations are incredibly similar to the state estimate at the a priori epoch that comes

out of the BL-OCBE. As with that estimate, we can demonstrate an equivalence between this

smoother and the Kalman smoother, except now it extends to all measurement epochs - not just

a one step operation. This proof follows the exact form of Lemma 3.3, thus it is unnecessary to

repeat here. The only difference is the estimates contain information through tl rather than tk.

With this property it is clear that Eq. 3.96 was aptly chosen to be the cost function for

the OCBE Full Smoothing Algorithm. Not only does this algorithm output a continuous state

trajectory with associated controls that use information from the entire measurement arc, but

it also preserves the optimality conditions of the Kalman Smoother. These include a minimum

variance criterion and optimality in a Bayesian sense.
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3.6 Conclusions

This chapter presented a full treatment of the OCBE. This included the definition of the

OCBE cost function and all relevant inputs, the definition of the necessary conditions for a solution

to the estimate, and a proof of existence. Furthermore, we found that the equations were not

analytically solvable for an arbitrary nonlinear system, thus we linearized the system to create the

GL-OCBE. The GL-OCBE provides a linearized algorithm to better understand the manner in

which the algorithm works, and a means to solve the nonlinear estimation problem via iteration

on the linear solutions. Through this linearization we were able to determine that the algorithm

is unbiased, and that it assumes the system is properly modeled, though it will add dynamic

mismodeling when errors dictate that it should.

After completing analysis of the GL-OCBE, we simplified the equations by assuming a ballis-

tic nominal trajectory, which resulted in the BL-OCBE. This linear estimator has a much simpler

form, but it cannot be iterated to solve the nonlinear estimation problem. What it loses in non-

linearity it gains in ideal properties for a linear estimator. We demonstrated that the BL-OCBE

is a generalization of the Kalman Filter with an equivalent state estimate at the measurement

epoch and associated covariance, a propagated a priori covariance that is equivalent to the Kalman

filter with continuous process noise, and the state estimate at the a priori epoch and its covariance

are equal to a smoothed Kalman estimate. Being a generalization of the Kalman Filter, we can

make the same optimality claims which include the fact that the BL-OCBE is a minimum variance

estimator, Bayesian Estimator, and a Maximum Likelihood Estimator.

We concluded the discussion of this algorithm by developing a complementary algorithm that

smoothed all state estimates and the control estimates. This algorithm outputs a continuous state

trajectory across all measurement epoch with a corresponding control trajectory, so that in the end

we have a continuous state solution based on all measurements that has no jump discontinuities.

We developed GL-OCBE and BL-OCBE versions of this algorithm, with the latter being shown to

be completely equivalent to a Kalman smoother with the addition of control estimates.
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Having fully developed this algorithm, the remaining chapters of this thesis will focus on

demonstrating the algorithm and making an even more sophisticated algorithm with the develop-

ment of complementary algorithms that detect maneuvers using the state and control estimates

from the OCBE along with a method to automate the estimator.



Chapter 4

Applications of the Optimal Control Based Estimator

In this Chapter we demonstrate the properties of the OCBE through numerical simulation.

This includes three separate systems: (1) a mass-spring-damper system with mismodeled dynamics,

(2) a Low Earth Orbit (LEO) satellite with mismodeled atmospheric drag dynamics and an unknown

actuated maneuver, and (3) a spacecraft in Geosynchronous Earth Orbit (GEO) that is undergoing

unknown stationkeeping maneuvers. For the first simulation we only apply the BL-OCBE since it

is a linear system that does not require iteration. For the latter two simulations an analysis using

both the BL-OCBE and the Nonlinear OCBE (iterated GL-OCBE) is provided. In each application

a discussion is provided detailing the results of the simulation, while highlighting the performance

of the OCBE.

4.1 Mass-Spring-Damper System with Dynamical Mismodeling

In these simulations we apply the BL-OCBE to a simple Mass-Spring Damper system in order

to show its abilities with a simple linear system. There are two different applications. The first

includes an unknown perturbing acceleration, and the second includes spring and damper mismod-

eling. Together these simulations demonstrate the BL-OCBE applied to problems with unknown

maneuvers and natural dynamical mismodeling. Because this is a linear system, application of the

iterated GL-OCBE would yield the same results so we will limit analysis to the BL-OCBE. For

both of these simulations the parameters in Table 4.1 are used.



69

Table 4.1: True System Parameters and Initial Conditions for Mass-Spring-Damper Simulation

Parameter Symbol Value Units

Mass m 100 kg
Spring Constant K 10 N/m
Damping Constant C 1 Ns/m
Acceleration Offset aoff 0.5 m/s2

Acceleration Magnitude amag 0.1 m/s2

Acceleration Sinusoid Rate ω 2π/5 rad/s
Initial Position x0 0 m
Initial Velocity ẋ0 0 m/s

4.1.1 Example I: Mass-Spring-Damper with Unmodeled Perturbation

This first simulation applies the BL-OCBE algorithm to a simple linear system - a forced

mass-spring-damper system with an unknown forcing function. Without knowledge of the forcing

function the problem becomes an issue of estimation in a dynamically mismodeled system. The

input force is an offset sinusoidal defined by Eq. 4.1 and the parameters in Table 4.1.

a(t) = aoff + amag sin(ωt) (4.1)

Observations of the position state are taken once every second for 100 continuous seconds.

These observations include 0.01 m Gaussian uncertainty. We will limit the estimated input as a

single dimension acceleration with constant uncertainty (B(t)T = [0,1] and Q(t) = σ2
Q).

Tracking results with varied assumed dynamic uncertainty (σ2
Q) for this simulation are shown

in Fig. 4.1. These deviations are taken with respect to the true trajectory (integrated using the ini-

tial conditions in Table 4.1). The three assumed dynamic uncertainties represent underestimating

the perturbing force (blue), overestimating the perturbing force (black), and using the true level of

dynamic uncertainty (red). We see in these results that underestimating the dynamic mismodeling

leads to poor tracking since the system has a biased force for which it cannot account. Overestimat-

ing the mismodeling leads to similar tracking results as properly accounting for the mismodeling,

though the latter does perform slightly better especially in the first several measurements.

Though overestimating the mismodeling yields similar tracking results not all things are equal.
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Figure 4.1: Smoothed state tracking results (deviations relative to truth) with varied assumed
dynamic uncertainty (σQ).

The uncertainty results (Fig. 4.2) show that the velocity should only be tracking at an accuracy

of 200 m/s rather than the 0.01 m/s that it is actually achieving. This discontinuity indicates that

the tracking with too high of an assumed dynamic uncertainty is not ideal. In systems where the

measurement model is highly nonlinear we also find that using too high of an assumed dynamic

uncertainty leads to degraded tracking as well.

The control results from this simulation are summarized in Fig. 4.3. Plotted are the results

from all three assumed dynamic uncertainties against truth (using the model in Eq. 4.1). As

is expected, the results from the under estimation case are poor considering the associated state

estimates were also poor. Both of the other other cases accurately replicate the offset sinusoidal

nature of the true perturbation. A detailed look at the control estimates for the case with the

true level of dynamic uncertainty is provided in Fig. 4.4. In these results we can see the accurate

reconstruction of the unknown input force. The uncertainty in the control accurately bounds

the deviations indicating that we have accurately tuned the estimator. This demonstrates the
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Figure 4.2: Smoothed uncertainty in state estimates with varied assumed dynamic uncertainty
(σQ).

estimator’s ability to recover unknown dynamics through independent observation.
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Figure 4.3: Smoothed control estimates against true input acceleration with varied assumed dy-
namic uncertainty (σQ).

True state deviations are not an achievable metric for real system application. Tuning the

assumed dynamic uncertainty does not rely on this though. We use a separate maneuver detection

process as described in Chapter 5. This method involves the user determining the statistical sig-
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Figure 4.4: (Top) Control Estimate using correct dynamic uncertainty and the true mismodeling.
(Bottom) Deviation between these control estimates and the true mismodeling with a 1-σ envelope.

nificance of the estimated control properties, and then adjusting the assumed dynamic uncertainty

such that the unknown dynamics properly accounted for and dealt with.

4.1.2 Example II: Spring-Mass-Damper with Mismodeled Natural Dynamics

Through the previous example we demonstrated this algorithm’s ability to recognize and

replicate unmodeled input forces. In this next example we will test the algorithm’s effectiveness

against mismodeled natural dynamics. We use the same setup as the previous example (without the

input force) except that the estimator is given a flawed natural dynamical model - a twenty percent

overestimate in the spring constant, and a fifty percent underestimate in the damping constant..

This corresponds to around +/- 0.02 m/s2 in the acceleration.

Tracking results for this setup with varied assumed dynamic uncertainty are given in Fig.

4.5. As with the previous example the assumed dynamic uncertainty is set to three levels: too low

(under representing the true dynamic uncertainty), too high (over-compensating for the dynamic

uncertainty), and the correct level (on the order of magnitude of the true mismodeling). Using both

too high and too low of an assumed dynamic uncertainty results in degraded tracking performance
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because in the former case more uncertainty is injected into the system than needs to be, and in

the latter case the injected uncertainty does not fully account for the dynamic mismodeling.
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Figure 4.5: Smoothed state tracking results (deviations relative to truth) with varied assumed
dynamic uncertainty (σQ).

This degraded performance is further highlighted by comparing the tracking results with the

uncertainty results (Fig. 4.6). When using too high or too low of an assumed dynamic uncertainty

the state deviations are either too large or too small relative to the accompanying uncertainty.

In the estimation process it is important for uncertainty to reflect that actual deviations in the

estimates in order to assign a proper level of confidence in the solution. For the case where we use

the correct dynamic uncertainty we achieve the complementary behavior between the tracking and

uncertainty results.

The control results with varied assumed dynamic uncertainty are provided in Fig. 4.7. When

too high of an assumed dynamic uncertainty is used the resulting control profiles are too large and

noisy. Using too low of an assumed dynamic uncertainty results in less noise, but the estimates are

far too small.
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Figure 4.6: Smoothed uncertainty in state estimates with varied assumed dynamic uncertainty
(σQ).

Detailed looks at the case where we use the correct dynamic uncertainty are provided in

Fig. 4.8. It is clear in these results that the estimated control models the behavior of the true

mismodeling with noise introduced from measurement and a priori state uncertainty. We also find

that the uncertainty in these estimates accurately captures the deviation of the estimates from

truth - the uncertainty is calculated by taking the expectation of the smoothed adjoint equation,

and then propagating that through to a control uncertainty. These results are important because

it clearly indicates there is a biasing in the dynamical model. Making the hypothesis that this is

a natural dynamics mismodeling, one can estimate the spring and damping coefficients from these

control estimates using the natural dynamics estimation algorithm developed in Chapter 5.

Through these two examples we have shown the abilities of this algorithm when applied to

dynamically mismodeled systems regardless of whether that mismodeling is natural or forced. The

power of the OCBE lies in the control estimates it outputs. These accurately reconstruct completely

unknown dynamics as optimal control policies, which are quite similar to the true dynamics they

are replicating.
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Figure 4.7: Smoothed control estimates against true natural mismodeling with varied assumed
dynamic uncertainty (σQ).
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Figure 4.8: (Top) Control Estimate with correct dynamic uncertainty and the true mismodeling.
(Bottom) Deviation between these control estimates and the true mismodeling with a 1-σ envelope.

4.2 Tracking a Spacecraft in LEO with Mismodeled Drag and an Unknown

Maneuver

As a first application of this algorithm to an astrodynamics tracking scenario we apply this

problem to a Low Earth Orbit (LEO) target that has an atmospheric drag mismodeling of 50%
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and an unknown cross track maneuver at some point during the observation arc. In terms of

observations, the target is observed with range and range-rate observations (1 m and 0.01 m/s

Gaussian error, respectively) once every hour for a total of 150 consecutive hours by one of three

space-based observers. In this simulation we set the assumed dynamic uncertainty in the form

of Q̃(t) = (tk − tk−1)σ
2
QIm×m. Specific simulation parameters are defined in Table 4.2. We will

independently address the problem through application of the BL-OCBE and the Nonlinear OCBE

to demonstrate the performance of each version of the OCBE.

Table 4.2: True System Parameters and Initial Conditions for LEO Simulation

Parameter Symbol Value Units

Mass m 970 kg
Projected Area Aproj 3.0 m2

Drag Coefficient CD 2 -
Reflectivity Coefficient SSRP 1.5 -
Initial Position Error σR 10 m
Initial Velocity Error σV 0.01 m/s

Initial True ECI Position x⃗0 757.7Î + 5,222.607Ĵ + 4,851.5K̂ km

Initial True ECI Velocity v⃗0 2.21321Î + 4.67834Ĵ − 5.37130K̂ km/s

4.2.1 Tracking with the BL-OCBE

To begin this simulation, we first pass the observations through the OCBE at a low assumed

dynamic uncertainty (σQ = 10−12 m/s2) to assess what is happening. The resulting postfit residuals

are shown in Fig. 4.9. These results clearly indicate the presence of some unknown dynamic

mismodeling as evidenced by the large deviations from zero. The deviations are slight initially, and

then they deviate rapidly around the 40th measurement. This is likely indicative of some slight

continuous mismodeling (i.e. natural dynamics) followed by a large sudden mismodeling (i.e. an

actuated maneuver). These mismodelings are most likely uncorrelated, thus we will approach them

differently.

To address the slight mismodeling seen in the first 40 measurements, we adjust the assumed

dynamic uncertainty until the resulting postfit residuals are within the expected range - in future
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chapters we will adjust this approach to focus on distance metrics rather than measurement residu-

als. The resulting postfit residuals obtained with an assumed dynamic uncertainty of σQ = 2× 10−8

m/s2 are shown in Fig. 4.10.
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Figure 4.9: Postfit measurement residuals with 3-σ bounds after running BL-OCBE (σQ = 10−12

m/s2).
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Figure 4.10: Zoomed-in postfit measurement residuals after accounting for drag mismodeling (σQ =

2 × 10−8 m/s2)

These results show an expected distribution of postfit residuals within the first 38 mea-

surements, thus indicating we have properly compensated for the presence of the slight constant

mismodeling. However, the sudden mismodeling is still present at the 39th measurement and it is

clouding our ability to assess the presence of dynamic mismodeling beyond it.

That sudden dynamic mismodeling is accounted for by adjusting the assumed dynamic un-

certainty for that specific measurement epoch (σQ = 7.3 × 10−5 m/s2). The resulting postfit mea-

surement residuals are shown in Fig. 4.11. These residuals fall well within the 3-σ bounds without

being too small (which would indicate over-reliance on measurements). This indicates successful

tracking over the entire data arc, thus we can move on to analyze the other outputs of the estimation
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process.

Measurement Index
20 40 60 80 100 120 140

R
a
n
g
e
 R

e
s
id

u
a
l 
[m

]

-5

0

5

Measurement Index
20 40 60 80 100 120 140

R
a
n
g
e
 R

a
te

 R
e
s
id

u
a
l 
[m

/s
]

-0.05

0

0.05

Figure 4.11: Postfit measurement residuals after accounting for drag mismodeling and maneuver

Though the true states are unattainable in practice, we may use them as a means to demon-

strate the successful tracking obtained via application of the OCBE to this problem with mis-

modeled dynamics. Figure 4.12 depicts the state deviations (measurement epoch estimates minus

truth) with a 3-σ envelope as a function of the measurement index. These show tracking on a meter

level in position, with a max just under 1 kilometer following the maneuver. Removing the drag

mismodeling would yield even more accurate results. For all measurements the state deviations

remained bounded by the uncertainty envelope, thus indicating we never lose track of the spacecraft

even following the maneuver. This demonstrates the OCBE’s robustness to dynamic mismodeling

whether it is continuous or discontinuous.
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Figure 4.12: ECI state estimate deviations relative to truth with a 3-σ envelope after accounting
for drag mismodeling and maneuver

One of the most important outputs from the OCBE is the control estimate. These estimates
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as a function of time in the Hill frame for this simulation are shown in Fig. 4.13. In these estimates

the maneuver clearly stands out among the rest. In truth the maneuver is a 0.5 m/s cross track

maneuver. Our estimates equate it as a 0.34 m/s maneuver with a strong cross-track component,

but the drag mismodeling induces in-plane components as well. Removing the drag mismodeling

would help to refine this maneuver estimate (size and directionality). The other, smaller control

estimates are clearly dominated by along-track dynamics. Combined with the fact that the controls

are of order 10−8 m/s2, these estimates correspond well with the 50% overestimate in drag. This

mismodeling may be removed by appending the parameter to the state vector or using the natural

dynamics estimation method in Chapter 5. This combined with the OCBE smoother algorithm

would result in more accurate control estimate.
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Figure 4.13: Hill frame control estimate magnitudes after accounting for drag mismodeling and
maneuver

Application of the BL-OCBE smoother, yields the true state deviations shown in Fig. 4.14.

The influence of the cross track maneuver is almost nonexistent in these results, meaning we have

full compensated for it and reconstructed it. That reconstruction is obtained via the smoothed

control estimates (Fig. 4.15). In these reconstructions, we see that the maneuver is estimated as

a cross-track event with a magnitude of approximately 0.658 m/s (compared to the true value of

0.5 m/s). Beyond this maneuver, the drag mismodeling is accurately reconstructed as a bias in the

negative along-track direction the order of 10−8 m/s2 with a periodicity equal to the orbit period.
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Figure 4.14: ECI smoothed state estimate deviations relative to truth with a 3-σ envelope after
accounting for drag mismodeling and maneuver
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Figure 4.15: Hill frame smoothed control estimate magnitudes after accounting for drag mismod-
eling and maneuver

Table 4.3: LEO Tracking RMS Values with the BL-OCBE

ECI State a priori Epoch Estimate Measurement Epoch Measurement Smoothed Estimate

RX(m) 8.411 25.643 0.388
RY (m) 19.548 33.964 0.759
RZ(m) 7.755 40.175 0.991
VX(mm/s) 10.228 8.329 0.358
VY (mm/s) 16.217 6.821 0.925
VZ(mm/s) 18.204 27.498 0.717

The improved tracking with the smoother is illustrated through RMS values shown in Table
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4.3. The smoothed RMS values are almost 50 times smaller in certain categories, indicating on

average far better tracking with the smoother. These are representative of the fact that the smoother

deals with the maneuver much better, and has better tracking in general since its trajectory is based

on all available information.

This example has shown the BL-OCBE may be applied to a LEO target with both natural

dynamic mismodeling and unmodeled actuated maneuvers. The results provide a lot of information

about the system including indications of how the dynamics are mismodeled. While this method

is involved as presented, the automated version of the algorithm will remove the manual iteration

that was required for this problem.

4.2.2 Tracking with the Nonlinear OCBE

To obtain the nonlinear OCBE solution to this tracking problem we need only apply the

iterative GL-OCBE algorithm until the necessary conditions converge to zero. Applying the same

method described in the BL-OCBE section, we are able to see the consistent mismodeling due

to error in the atmospheric drag model as well as the effects of a one-time maneuver. After

compensating for these mismodelings by adjusting the assumed dynamic uncertainty in the same

manner as with the BL-OCBE, we obtain the postfit measurement residuals shown in 4.16. As can

be seen, these residuals are incredibly similar to analysis with the BL-OCBE.
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Figure 4.16: Nonlinear OCBE postfit measurement residuals after accounting for drag mismodeling
and the cross-track maneuver

The level of tracking may also be assessed via the state estimate deviations (Fig. 4.17).
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Figure 4.17: Nonlinear OCBE ECI state estimate deviations relative to truth with a 3-σ envelope
after accounting for drag mismodeling and the cross-track maneuver

These results show similarity to the BL-OCBE results as well. This is indicative of the fact that

mismodelings are small on the scale of the problem and measurements are taken frequently enough

to maintain linearity assumptions such that the BL-OCBE tracks accurately.

Finally, the control estimates from tracking with the Nonlinear OCBE are shown in Fig.

4.18. These results clearly show the along-track biasing due to the drag mismodeling. The cross-

track maneuver also clearly sticks, out though the drag mismodeling makes it difficult to determine

directionality. Applying the smoother or removing the drag mismodeling would increase these

reconstructions.
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Figure 4.18: Nonlinear OCBE Hill frame control estimate magnitudes after accounting for drag
mismodeling and the cross-track maneuver

After applying the OCBE smoother, we obtain state estimate deviations in Fig. 4.19. The
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state deviations are much less than the unsmoothed results and the effects of the maneuver have

been almost completely removed. This maneuver is accurately reconstructed via the smoothed

control estimates (Fig. 4.20). The cross-track directionality is apparent in the reconstruction, and

we estimate it as a 0.659 m/s maneuver. Additionally, the drag mismodeling is evident via the

consistent biasing in the along-track direction, which has a periodicity equal to the spacecraft’s

orbital period and the magnitude is consistent with a 50% underestimate in atmospheric drag.
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Figure 4.19: Nonlinear OCBE ECI state estimate deviations relative to truth with a 3-σ envelope
after accounting for drag mismodeling and the cross-track maneuver
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Figure 4.20: Nonlinear OCBE Hill frame control estimate magnitudes after accounting for drag
mismodeling and the cross-track maneuver

As with the BL-OCBE results, we can show the vast improvements in tracking obtained

via application of the OCBE smoother through the state deviation RMS values (Table 4.4). We

can also compare these results to the BL-OCBE results (Table 4.3) and see modest improvements

with the Nonlinear OCBE. These improvements are only modest because the actual dynamical



84

mismodeling are not large enough to push the linear assumptions on the BL-OCBE given the level

of information in the problem. However, another metric clearly indicates the Nonlinear OCBE’s

improved performance with respect to the BL-OCBE. That metric is a squared weighted RMS,

where the state deviations are weighted by the inverse of the state estimate covariance. This forms

a χ2-like statistic assuming the estimates are not strongly correlated, with a mean of 6 (the number

of estimated states). These values are summarized in Table 4.5. The Nonlinear OCBE results

are far closer to the mean, which indicates better correspondence between tracking and estimated

uncertainty. This is representative of the fact the Nonlinear OCBE deals better with maneuvers and

other mismodeled dynamics, thus the uncertainties it outputs better represent the actual tracking

level. The smoothed values are much lower due to the fact the estimates are much more correlated

between epochs in a smoother.

Table 4.4: LEO Tracking RMS Values with the Nonlinear OCBE

ECI State a priori Epoch Estimate Measurement Epoch Measurement Smoothed Estimate

RX(m) 8.417 25.686 0.327
RY (m) 19.591 34.068 0.671
RZ(m) 7.683 40.306 0.802
VX(mm/s) 10.122 8.295 0.303
VY (mm/s) 16.131 6.731 0.703
VZ(mm/s) 18.232 27.512 0.660

Table 4.5: LEO Tracking squared weighted RMS values with the BL-OCBE and the Nonlinear
OCBE

Estimate Type Nonlinear OCBE BL-OCBE

a priori epoch estimates 5.546 7.183
Measurement epoch state estimates 5.604 7.354
Smoothed state estimates 3.662 4.707

This example shows that the BL-OCBE may obtain very comparable results to the full

nonlinear estimator when dynamic mismodeling is not too large and the observations are not too

sparse. When this is not the case though, the nonlinear algorithm will display noticebly better
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performance.

4.3 Tracking a Spacecraft in GEO with Unknown Stationkeeping Maneuvers

In this sample tracking scenario, a spacecraft in GEO is being observed via a ground station

with non-cooperative range (10 m Gaussian uncertainty) and azimuth and elevation angle (1 arc-

second Gaussian uncertainty) observations. The spacecraft is observed for two hours each night

(observations taken every 100 seconds) over the course of fifteen days. Unknown to the estimator,

the spacecraft executes stationkeeping maneuvers periodically to account for latitude (North-South

[NS] maneuver) and longitude (East-West [EW] maneuver) deviations from the nominal geosyn-

chronous orbit at a longitude of 60 degrees. The true dynamical model includes two body gravity,

oblateness effects, solar radiation pressure (with area-to-mass ratio of 0.024), third body effects

(sun and moon), and the actuated maneuvers. More perturbations may be included, but they do

not tend to effect the significantly results unless they are mismodeled.

The actuated maneuvers are designed as low thrust events that last 4 hours. They initiate

when a latitude or longitude nominal deviation barrier is crossed (0.05 degrees latitude and 0.1

degrees longitude), and conclude 4 hours later when the latitude or longitude has been reset to

the nominal value. The maneuvers are decoupled such that latitude maneuvers do not influence

longitude and vice versa. The spacecraft starts with an initial 0.25 degree deviation from nominal in

latitude, a 0.2 degree deviation from nominal in longitude, and no deviation from nominal in radius.

To start the simulation the true trajectory is mismodeled on the order of 1 km in position and 1

m/s in velocity. In the following two sections we track this spacecraft with the given measurements

using the BL-OCBE and the Nonlinear OCBE, respectively.

4.3.1 Tracking with the BL-OCBE

Tracking this spacecraft with the BL-OCBE, we initially pass the data through the estimator

with σQ,NF = 10−10 m/s2 in order to assess the presence of any mismodeling beyond this level. The

resulting postfit measurement residuals for this pass through the data are shown in Fig. 4.21. It is
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clear from these results that the first batch of measurements are processed properly, however just

past the 200th measurement there is a large event.

To account for this event we adjust the assumed dynamic uncertainty for this specific mea-

surement epoch until linear postfit measurement residuals are within an acceptable level (+/- 3σ).

The resulting nonlinear postfit measurement residuals (i.e. using ) after accounting for this first

maneuver are shown in Fig. 4.21. These results confirm that the observed event was a one time

maneuver, since the residuals immediately following the event are within the nominal range without

additional compensation. However, a second event occurs much later in the data set.
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Figure 4.21: BL-OCBE postfit measurement residuals with a 3-σ envelope when processing GEO
observations with σQ,NF = 10−10 m/s2.
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Figure 4.22: BL-OCBE postfit measurement residuals with a 3-σ envelope after accounting for first
observed maneuver.

We account for this observed event in the same manner as the previous event. The result-

ing postfit measurement results are plotted in Fig. 4.23. These results clearly indicate that all

statistically significant dynamic mismodelings have been addressed, but there is a strong outlier

that corresponds to the first maneuver. There is a similar outlier for the second maneuver as well,
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but this one is much less statistically significant than the first. The reason these remain is due to

limitations in the linear assumptions of the estimator. The maneuvers are large enough to push the

tracking outside of this regime, which results in the linear residuals being appropriately distributed,

but the nonlinear residuals do not reflect this. As we will see, the Nonlinear OCBE avoids these

issues.

The state estimate deviations for this scenario are shown in Fig. 4.24. These results clearly

indicate that the BL-OCBE never loses track of the objects even with the linear issues identified in

the measurement residuals. We achieve tracking on the order of 10 m in position and sub 1 mm/s

in velocity, which corresponds with expected values given these type of observations for this orbit.

Even following the maneuvers, the tracking never exceeds 1 km for all time in any of the 3 ECI

dimensions.
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Figure 4.23: BL-OCBE postfit measurement residuals with a 3-σ envelope after accounting for both
observed maneuvers.

The control estimates that come out of the BL-OCBE for this scenario are plotted as mag-

nitudes in the Hill frame in Fig. 4.25. The maneuvers are evident in these results, and we may

also characterize them. The first maneuver is clearly in-plane dominated, thus it represents an

EW maneuver. We can quantify the maneuver with a ∆V estimate of 0.5262 m/s. This assumes

optimality in the true maneuver, which is not the case here so this estimate is a lower bound on the

true value of 16.8652 m/s. Similarly, the second maneuver is cross-track dominated, thus we can

characterize it as a NS maneuver with a ∆V of 2.5350 m/s (compared to the true value of 7.6552

m/s). These are the only two true dynamic mismodelings within the data set, and the BL-OCBE
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Figure 4.24: BL-OCBE state estimate deviations relative to truth with a 3-σ envelope after ac-
counting for both observed maneuvers.

is able to identify both, characterize them, and reconstruct them through the control estimates.
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Figure 4.25: BL-OCBE control estimates magnitude in a Hill frame after accounting for both
observed maneuvers.

After applying the BL-OCBE smoother, we obtain the state deviations in Fig. 4.26. The

effects of the maneuvers are still seen in these residuals however they are greatly diminished. The

results indicate a good level of tracking for the situation even in the presence of two maneuvers.

These maneuvers are reconstructed through the smoothed control estimates (Fig. 4.27). The

maneuvers clearly stand out from the noise. The first maneuver is obviously biased toward in-plane

accelerations, thus it represents an EW maneuver with an estimated magnitude of 1.007 m/s. The

second maneuver clearly stands out as a NS maneuver with an estimated magnitude of 3.551 m/s.
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Figure 4.26: BL-OCBE smoothed state estimate deviations relative to truth with a 3-σ envelope
after accounting for both observed maneuvers.
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Figure 4.27: BL-OCBE smoothed control estimates magnitude in a Hill frame after accounting for
both observed maneuvers.

Table 4.6: GEO Tracking RMS Values with the BL-OCBE

ECI State a priori Epoch Estimate Measurement Epoch Measurement Smoothed Estimate

RX(m) 56.119 61.665 20.336
RY (m) 17.685 20.017 4.511
RZ(m) 31.989 33.431 11.834
VX(mm/s) 72.631 73.515 0.312
VY (mm/s) 58.340 60.802 3.156
VZ(mm/s) 75.303 95.699 0.717

Finally, we can compare real-time tracking results and the smoother algorithm using RMS

values for state deviations (Table 4.6). It is clear in these results that the smoother provides orders

of magnitude more accuracy in tracking. This demonstrates the effectiveness of the algorithm even

in the presence of two large maneuvers, though it is limited to a post-processing tool.
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This example has shown the BL-OCBE’s ability to track a GEO spacecraft through two

unknown maneuvers while obtaining some information about those maneuvers. While there were

some issues associated with the linearization, the algorithm never diverges, and successfully tracks

the spacecraft for all time.

4.3.2 Tracking with the Nonlinear OCBE

We now apply the Nonlinear OCBE algorithm to this tracking problem. Following the same

process outlined in the BL-OCBE application, we are able to detect and compensate for two events

within the observation set. The resulting postfit measurement residuals after compensating for

these two maneuvers are shown in Fig 4.28. These residuals show no outliers, like we saw with the

BL-OCBE, thus demonstrating a key difference between the algorithms.
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Figure 4.28: Nonlinear OCBE postfit measurement residuals with a 3-σ envelope after accounting
for both observed maneuvers.

The resulting state deviations are shown in Fig. 4.29. The tracking levels are very similar

to the BL-OCBE results, however there are fewer instances where the deviations approach the

3-σ envelopes following the maneuvers, especially in the velocity. This shows that the nonlinear

estimator is far more robust to large maneuvers as compared to the BL-OCBE, which is what we

should expect.

The control estimate magnitudes in a Hill frame are depicted in Fig. 4.30. We are able to

characterize the first maneuver as a 0.5254 m/s EW maneuvers, and the second maneuver as a

2.5350 m/s NS maneuver. This reflects the true mismodeling (though the size estimates are biased
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by the optimality assumption). Application of the OCBE smoother would inform these estimates

even further.
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Figure 4.29: Nonlinear OCBE state estimate deviations relative to truth with a 3-σ envelope after
accounting for both observed maneuvers.
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Figure 4.30: Nonlinear OCBE control estimates magnitude in a Hill frame after accounting for
both observed maneuvers.

After applying the OCBE smoother, we obtain the state deviations in Fig. 4.31. The effects

of the maneuvers are still seen in these residuals however they are greatly diminished. The results

indicate a good level of tracking for the situation even in the presence of two maneuvers. These

maneuvers are reconstructed through the smoothed control estimates (Fig. 4.32). The maneuvers

clearly stand out from the noise. The first maneuver is obviously biased toward in-plane accelera-

tions, thus it represents an EW maneuver with an estimated magnitude of 0.994 m/s. The second

maneuver clearly stands out as a NS maneuver with an estimated magnitude of 3.551 m/s.



92

0 200 400 600 800 1000
R

X
 [
k
m

]

10
-3

10
-2

10
-1

0 200 400 600 800 1000

R
Y

 [
k
m

]

10
-6

10
-4

10
-2

10
0

0 200 400 600 800 1000

R
Z
 [
k
m

]

10
-6

10
-4

10
-2

10
0

Measurement Index
0 200 400 600 800 1000

V
X

 [
k
m

/s
]

10
-10

10
-5

Measurement Index
0 200 400 600 800 1000

V
Y

 [
k
m

/s
]

10
-7

10
-6

10
-5

Measurement Index
0 200 400 600 800 1000

V
Z
 [
k
m

/s
]

10
-7

10
-6

10
-5

10
-4

.

Figure 4.31: Nonlinear OCBE smoothed state estimate deviations relative to truth with a 3-σ
envelope after accounting for both observed maneuvers.
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Figure 4.32: Nonlinear OCBE smoothed control estimates magnitude in a Hill frame after account-
ing for both observed maneuvers.

Table 4.7: GEO Tracking RMS Values with the Nonlinear OCBE

ECI State a priori Epoch Estimate Measurement Epoch Measurement Smoothed Estimate

RX(m) 51.921 55.896 20.055
RY (m) 15.933 17.311 4.389
RZ(m) 32.825 34.315 11.845
VX(mm/s) 63.238 64.260 0.308
VY (mm/s) 54.797 57.502 1.310
VZ(mm/s) 75.809 96.098 3.166

Finally, we can compare real-time tracking results and the smoother algorithm using RMS

values for state deviations (Table 4.7). It is clear in these results that the smoother provides orders

of magnitude more accuracy in tracking. This demonstrates the effectiveness of the algorithm even
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in the presence of two large maneuvers, though it is limited to a post-processing tool. Comparing

the Nonlinear results to the BL-OCBE results, it is evident that the Nonlinear algorithm has a

slight edge. Its RMS values are generally lower on the order of meters in position and 1-10 mm/s

in velocity. This is because the nonlinear algorithm handles large maneuvers far better than the

linearized algorithm. Additionally, the weighted RMS values (Table 4.8) in general show that the

nonlinear state estimate uncertainties more accurately reflect the true level of tracking fas compared

to the BL-OCBE values. This is also representative of the nonlinear algorithm’s increased ability

to deal with large maneuvers as compared to the linear algorithm.

Table 4.8: GEO Tracking squared weighted RMS values with the BL-OCBE and the Nonlinear
OCBE

Estimate Type Nonlinear OCBE BL-OCBE

a priori epoch estimates 8.086 8.980
Measurement epoch state estimates 8.089 9.037
Smoothed state estimates 5.678 6.717

This example shows that the Nonlinear OCBE algorithm may be used in systems with large

dynamic mismodeling without having the same linearization issues as the BL-OCBE. The BL-

OCBE has a much simpler and computationally efficient form, thus this method is generally pre-

ferred unless more accurate and robust results are desired.

4.4 Conclusions

In this chapter, we have focused on demonstrating the OCBE through application to three

different tracking problems. These include a simple linear system with both natural mismodeling

and an unknown perturbation, a LEO-based tracking scenario with mismodeled atmospheric drag

and an unknown cross-track maneuver, and a GEO-based simulation where the observed target

undergoes two unknown stationkeeping maneuvers.

The first simulation demonstrated the BL-OCBE as applied to a linear system. In this sce-

nario the results are equivalent to a full nonlinear treatment due to the linear nature of the system.
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This example demonstrated the algorithm’s ability to successfully track a dynamically mismod-

eled system as well as reconstruct that mismodeling especially when the results are smoothed. In

the case where an unknown perturbation was present, the algorithm was able to lock on to that

perturbation and successfully reconstruct it even though it was biased from zero. The natural

mismodeling was also successfully identified and reconstructed, though a separate parameter esti-

mation scheme (such as the one discussed in Chapter 5) would be needed to permanently remove

the mismodeling from the system.

The LEO and GEO simulations demonstrated this algorithm in an astrodynamics context.

In both scenarios the OCBE was able to keep track of the target even in the presence of large

maneuvers. These maneuvers were clearly observed in the process along with natural mismodeling.

We were able to compensate for these by adjusting the assumed dynamic uncertainty. The resulting

control estimates gave us information on these mismodelings including size, directionality, and a

time-series representation of them. There were slight errors with the BL-OCBE due to pushing

the bounds of the linearization assumption, but the algorithm never loses the track of the target.

The Nonlinear OCBE generally has better tracking performance, but the differences are not always

large unless a large maneuver has taken place. Given the BL-OCBE is much more efficient com-

putationally this algorithm may generally be defaulted too unless long observation gaps and large

maneuvers necessitate a nonlinear estimator.

While the algorithm successfully tracks the target in the presence of dynamic mismodeling,

the process is very manual at this point and there is no formal method for identifying the presence

of mismodeling other than analysis of measurement residuals. In the next two chapters we will

alleviate these concerns by introducing a method to detect the presence of dynamic mismodeling and

automatically compensate for it so that the user does not have to be in the loop while observations

are being processed.



Chapter 5

Maneuver Detection and Reconstruction with the OCBE

The OCBE is an optimal state estimator that is robust to dynamic mismodeling, but its

most advantageous properties relate to its control estimates. These control estimates are unique to

the OCBE. On their own, they are reconstructions of mismodeled dyamics, thus they can indicate

important aspects of mismodeling including: directionality, magnitude, intent (for active dynamics),

and possibly even the source. Additionally, the controls can be used in a maneuver detection

algorithm based on the control distance metric formulation of Holzinger, Scheeres, and Alfried [28].

In this chapter we will develop the maneuver detection abilities of the OCBE in a control

distance metric framework. This will include an overview of the nonlinear metrics, the metrics in

a GL-OCBE context, and the metrics in a BL-OCBE context. In each discussion we will treat

the functional form of the metrics and the statistical properties of the metrics. There is also

a discussion of how these statistics may be used to determine whether the calculated metric is

statistically significant enough to indicate the presence of deterministic mismodeling in the system.

5.1 Nonlinear OCBE Distance Metrics

The estimates that come out of the OCBE may not be valid if there exists mismodeling in

the system that was not compensated for. To ascertain the validity of our estimate we employ

certain metrics to measure the validity of the fit. These metrics are specifically called the OCBE

distance metrics, and they effectively measure the “distance” between the information put into the

filter and the estimates coming out of the filter. Given both the inputs and estimates are stochastic
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values, the resulting distance metrics are stochastic as well. Using the stochastic properties of

the distance metrics, we can determine whether the calculated distance metrics are statistically

significant enough to indicate the presence of uncompensated mismodeling in the system.

These metrics measure distance in between members of a set defined by the inputs into the

process. We define this set as shown below:

A ∶ R ×Rn ×R ×Rp × U (5.1)

This set is defined by five quantities: initial time, initial state, final time, measurement, and control

process. We define the the input information (a) and estimates (b) as members of this set as shown

below.

a = {tk−1, x̄k−1∣k−1, tk, Y⃗k, ū(t)} ∈ A (5.2)

b = {tk−1, x̂k−1∣k, tk, h(tk, x̂k∣k), û(t)} ∈ A

The goal is to measure the distance between a and b, and determine if this distance is statistically

significant to indicate the presence of uncompensated mismodeling.

In keeping with the nonlinear nature of the OCBE, the metrics designed for maneuver de-

tection are fully nonlinear. Because of this statistics cannot be generated for them without losing

generality in the state dynamics and the state-observation relationship. As such, this discussion will

only define the metrics to be used. All statistical analysis will be reserved for the linearizations to

follow. Once the nonlinear estimator is solved through iteration of the GL-OCBE, linear statistics

may be used to perform maneuver detection for the nonlinear OCBE.

Following the control distance metric framework, we desire a metric that may be used to

tell us whether an estimated control is statistically significant. A metric that captures this is the

integrated Lagrangian portion of the OCBE cost function. Defined in Eq. 5.3, this metric will be

referred to as the OCBE control distance metric.

DC(a, b) = ∫
tk

tk−1

1

2
(u⃗(τ) − ū(τ))T Q̃(τ)−1

(u⃗(τ) − ū(τ))dτ (5.3)
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This metric balances the estimated control against the expected level of mismodeling weighted

by the covariance in the dynamics. The larger the metric, the more significant the mismodeling.

The metric is positive definite, and for Gaussian errors the resulting metric would have a χ2-like

form. In the GL-OCBE and BL-OCBE implementations these statistics will be derived along with

a χ2-based statistical test to determine if the control estimate represents actual mismodeling in the

system.

This nonlinear metric is clearly a portion of the OCBE cost function. Following that logic one

may develop distance metrics based on the other portions of the cost function. By creating separate

metrics we are able to understand how the optimization is balancing the error in the system. It tells

us whether the error is control dominated, measurement dominated, or a priori state dominated.

This information provides more thorough overview of what is happening in the system, and allows

us to address mismodeling when present even if the control metric does not indicate its presence.

The first of these metrics is called the OCBE measurement distance metric (Eq. 5.4). Like the

control distance metric, it satisfies all of the properties of a distance metric [28], and it has a more

historically significant form. Measurement residuals have long been used to determine if a filter is

estimating properly. Because true state trajectories are unavailable in practice for filter analysis,

the distribution of residuals may be used to assess the accuracy of the fit. The distribution should

be mean zero with a covariance equal to the measurement covariance. For data sparse applications,

though, this type of analysis is not necessarily possible. Instead a metric analysis may be done on

a measurement-by-measurement basis (as is suggested here) to determine whether the residual is a

function of error in the system or representative of some deterministic mismodeling.

DM(a, b) =
1

2
(Y⃗k − h(tk, x⃗k))

T
R−1
k (Y⃗k − h(tk, x⃗k)) (5.4)

Similarly, the OCBE a priori state distance metric (Eq. 5.5), may be used to asses the

appropriateness of the fit in terms of the state estimate at the a priori epoch. This method does

not have as strong of a historical significance as the measurement metric because Kalman filters

propagate a priori information to the measurement epoch. Thus, this metric is unique to the OCBE
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as well.

DA(a, b) =
1

2
(x̄k−1∣k−1 − x⃗k−1)

T
P̄ −1
k−1∣k−1 (x̄k−1∣k−1 − x⃗k−1) (5.5)

These three metrics allow us to independently assess the fit in terms of a priori state, mea-

surement, and control errors. While there is coupling between the metrics because the optimal

estimates are coupled. However, there may be situations where one metric detects an anomaly

where another does not, so employing all three independently results in a more robust anomaly

detection procedure. The anomalies detected will generally be in one of three categories: (1) mis-

modeled dynamics, (2) measurement outlier, and (3) a priori state outlier. The first anomaly is the

focus of this estimator, but the others often occur in state estimation. As such, these three metrics

may be employed to help inform what type of error is most likely to have occurred.

5.2 Maneuver Detection with OCBE Distance Metrics

The distance metrics as defined are all quadratic measures. For the linear estimators the

inputs were defined as Gaussian, thus the outputs of the linear system are Gaussian as well. As will

be shown each of the Gaussian random variables defining the metrics are zero-mean. As weighted

quadratic-Gaussian measures these random variables are quite similar to χ2 random variables. In

this section we will detail a method for testing how statistically significant a metric is against a χ2

distribution. As this method is numerical, we also provide an analytical method based on Gaussian

properties. We will develop these methods for an arbitrary metric of the form defined below.

DZ = z⃗TMz z⃗ (5.6)

E [z⃗] = 0⃗

E [z⃗z⃗T ] = Pz

As will be shown, each of the three metrics on a linear level conforms to the definition defined here.

The χ2method for maneuver detection with these metrics relies upon a more accurate as-

sumption than the Gaussian method we will discuss at the end of this section, but it is numerical
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as a result. The method follows Holzinger, Scheeres, and Alfriend’s [28], original use of Pearson’s

approximation [54]. This approximates the distribution as a weighted chi-squared distribution,

which is quite accurate given its quadratic-Gaussian functional form. The approximation begins

by rearranging the distance metric into the form of Eq. 5.7.

Dz =
r

∑
i=1

λiU
2
i (5.7)

U⃗ =T TP −1/2
z z⃗

= [ U1 . . . Ur ]

T

This is an exact relation with no approximation made yet. In this notation the T matrix consists

of the normalized eigenvectors of the matrix: P
−1/2
z MzP

−1/2
z . λi are the accompanying eigenvalues.

This method requires the set of eigenvectors to be orthonormal such that T−1 = T T .

In this form we may apply Pearson’s Approximation [54] such that the distance metric be-

comes a function of a chi-squared random variable with ν degrees of freedom (χ2
ν) as shown below.

Dz ≈
θ3

θ2
χ2
ν + (θ1 −

θ2
2

θ3
) (5.8)

θs =
r

∑
j=1

λsj

ν =
θ3

2

θ2
3

The degrees of freedom associated with this chi-squared may be fractional. As such an interpola-

tion method would need to be employed between integer degrees of freedom in order to obtain a

continuous result.

Using this form of the distance metric we may perform a hypothesis test to determine whether

the system is subject to deterministic mismodeling. We define our hypothesis as: the system is

properly modeled and not subject to a deterministic errors. A threshold probability should be

selected in order to run a one-tail χ2 test. In general we select thresholds in the neighborhood of

95-99%, but this value should be selected based on the problem. Too large of a threshold promotes

missed detections while too large promotes false detections. The χ2
ν value associated with this
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threshold percentile may be obtained numerically, then the result may be mapped into the distance

metric of interest via Eq. 5.8. This threshold metric is then compared against the calculated

metric. If the calculated metric is less than the threshold, then we confirm our null hypothesis that

the system is properly modeled. However, if the metric exceeds the threshold we reject the null

hypothesis and accept the alternative hypothesis that some deterministic mismodeling is present

within the system.

While the χ2 method is accurate, the Gaussian method is analytic. It assumes that the metric

is actually Gaussian distributed according to the analytical mean and variance of distribution. This

assumption will cause errors because the metric is positive definite thus it cannot be Gaussian, but

it can provide reliable statistical threshold to test metrics against. This method follows the same

procedure as the χ2 method, but the threshold metric is obtained analytically through the definition

of a z-score at the threshold percentile (Eq. 5.9).

Dz,thresh = µz + σzz
∗ (5.9)

As with the other method, the calculated metric is compared to this threshold to determine if the

null hypothesis is accepted or rejected.

Once the null hypothesis has been rejected, the next step is compensating for the detected

mismodeling. This is accomplished by increasing the assumed dynamic uncertainty (Q̃(t)). This

process should be iterated until a maneuver is no longer detected. In practice, the aim is to select

the assumed dynamic uncertainty that results in the metric and mean being equal. Details on this

will be discussed in the development of the Adaptive OCBE (Chapter 6).

5.3 GL-OCBE Distance Metrics

Having defined the nonlinear metrics and the method for testing whether they are statistically

significant, we now desire a linear version of the metrics so that we can incorporate them into our

linear estimators. The version of the metrics linearized about an arbitrary initial state and adjoint

will be called the GL-OCBE metrics. In this section we will derive these linearized metrics and their
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statistics. Using these values we may implement the χ2 and Gaussian hypothesis testing methods

to perform maneuver detection with each new measurement epoch.

Starting with the OCBE control distance metric, our goal is to linearize the control estimates,

and obtain a form similar to Eq. 5.6. Using the GL-OCBE definition of the control estimate we

define the difference from the a priori control as defined below.

û(t) − ū(t) ≈ − Q̃(t)B(t)T [(p̃(t) + v⃗p(t∣tk−1)) + (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) δx̂k−1∣k (5.10)

+Φpp(t, tk−1) (P̄
−1
k−1∣k−1δx̄k−1∣k−1 − p̃k−1)]

= − Q̃(t)B(t)T [v⃗p(t∣tk−1) + (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) η̂k−1∣k

+Φpp(t, tk−1)P̄
−1
k−1∣k−1η̄k−1∣k−1]

As previously discussed, this difference is zero mean, which corresponds to the properties we desire

for the Gaussian quadratic form of the metric. Defining a portion of this difference as ∆c⃗(t), we

obtain its associated covariance as a function of time as described in Eq. 5.12.

∆c⃗(t) =Φpp(t, tk−1)P̄
−1
k−1∣k−1 (δx̄k−1∣k−1 − δx̂k−1∣k) +Φpx(t, tk−1)δx̂k−1∣k (5.11)

+ (p̃(t) + v⃗p(t∣tk−1)) −Φpp(t, tk−1)p̃k−1

=Φpp(t, tk−1)P̄
−1
k−1∣k−1 (η̄k−1∣k−1 − η̂k−1∣k) +Φpx(t, tk−1)η̂k−1∣k + v⃗p(t∣tk−1)

P∆c(t) =E [∆c⃗(t)∆c⃗(t)T ] (5.12)

=Φpp(t, tk−1)P̄
−1
k−1∣k−1 [P̂k−1∣k + P̄k−1∣k−1 − P̄k−1∣k−1 [Ik−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)]

T

− [Ik−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)] P̄k−1∣k−1] P̄
−1
k−1∣k−1Φpp(t, tk−1)

T
+E [v⃗p(t∣tk−1)v⃗p(t∣tk−1)

T ]

+Φpx(t, tk−1)P̂k−1∣kΦpx(t, tk−1)
T
+ (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)E [η̂k−1∣kv⃗p(t∣tk−1)

T ]

+E [v⃗p(t∣tk−1)η̂
T
k−1∣k] (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T

Having defined these values, we define the GL-OCBE control distance metric in terms of ∆c⃗(t) and

its covariance as defined below.

DC = ∫

tk

tk−1
∆c⃗(τ)TMc(τ)∆c⃗(τ)dτ (5.13)
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MC(t) =
1

2
B(t)Q̃(t)B(t)T (5.14)

The result is slightly different than the form of Eq. 5.6 due to the presence of the integral. Because

expectation operators and integrals are commutable we can still compute the statistics of this

random variable in the same manner. The results of this calculation are summarized below.

µC = ∫

tk

tk−1
Tr [MC(τ)P∆c(τ)]dτ (5.15)

σ2
C = ∫

tk

tk−1
2Tr [MC(τ)P∆c(τ)MC(τ)P∆c(τ)]dτ (5.16)

The χ2 approximation must be placed within the integral, thus the threshold like the mean and

variance must be computed as a integral. Once this is computed, the hypothesis test may be run

to test whether the control metric is statistically significant or not.

For the measurement metric, the linearization and simplification are straightforward due to

the form of the equations. This linearization and simplification are shown below.

Y⃗k − h(tk, x̂k∣k) ≈ [Y⃗k − h(tk, x̃k)] − H̃kδx̂k∣k (5.17)

= (Ip×p − H̃kLk) [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))]

= (Ip×p − H̃kLk) [ε⃗k − H̃kη̄k∣k−1]

From this development it is clear that residual is zero mean with a known covariance. Subbing

this simplification into the nonlinear OCBE measurement distance metric definition (Eq. 5.4), we

obtain the GL-OCBE in terms of the measurement and the propagated a priori state(Eqs. 5.18

and 5.19).

DM = [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))]
T
MM [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))] (5.18)

MM =
1

2
(Ip×p − H̃kLk)

T
R−1
k (Ip×p − H̃kLk) (5.19)

Following the control distance metric development, the analytical mean and variance of this metric’s

distribution calculated as shown below.

µM = Tr [MM (Rk + H̃kP̄k∣k−1H̃
T
k )] (5.20)
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σ2
M = 2Tr [MM (Rk + H̃kP̄k∣k−1H̃

T
k )MM (Rk + H̃kP̄k∣k−1H̃

T
k )] (5.21)

This metric is easily implementable because it requires no extra calculations beyond the matrices

already developed in the OCBE. Its form is much simpler than the control metric in a GL-OCBE

context. As we will see, it is also a far simpler model than the GL-OCBE a priori state distance

metric.

While the nonlinear form of the OCBE a priori state distance metric is quite simple, the

GL-OCBE has some complexities due to the more complex form of the state estimate at the a

priori epoch. The development of the linear a priori state difference and its associated covariance

are given below. The development of this covariance follows the derivation in Appendix B.3.

∆a⃗ =x̄k−1∣k−1 − x̂k−1∣k (5.22)

≈δx̄k−1∣k−1 − δx̂k−1∣k

= (In×n − Ik−1) δx̄k−1∣k−1 − Ik−1b̃k−1 −Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))]

= (In×n − Ik−1) η̄k−1∣k−1 − Ik−1P̄k−1∣k−1Φ−1
pp v⃗p(tk) −Lk−1 [ε⃗ − H̃kη̄k∣k−1]

Pa =E [∆a⃗∆a⃗T ] (5.23)

= (In×n − Ik−1) P̄k−1∣k−1 (In×n − Ik−1)
T
+Lk−1 (Rk + H̃kP̄k∣k−1H̃

T
k )LTk−1

+ (Ik−1P̄k−1∣k−1Φ−1
pp)E [v⃗p(tk)v⃗p(tk)

T ] (Ik−1P̄k−1∣k−1Φ−1
pp)

T

+ (In×n − Ik−1) P̄k−1∣k−1 [Φxx +Pk∣k−1Φpx]
T
H̃T
k L

T
k−1

+Lk−1H̃k [Φxx +Pk∣k−1Φpx] P̄k−1∣k−1 (In×n − Ik−1)
T

− (Ik−1P̄k−1∣k−1Φ−1
pp) (E [vp(tk)v⃗p(tk)

T ]P
T
k∣k−1 +E [v⃗p(tk)v⃗x(tk)

T ])
T
H̃T
k L

T
k−1

−Lk−1H̃k (Pk∣k−1E [v⃗p(tk)v⃗p(tk)
T ] +E [v⃗x(tk)v⃗p(tk)

T ]) (Ik−1P̄k−1∣k−1Φ−1
pp)

T

With these definitions, we may define the GL-OCBE a priori state distance metric and its statistics

as shown below.

DA = ∆a⃗TMA∆a⃗ (5.24)
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MA =
1

2
P̄ −1
k−1∣k−1 (5.25)

µA = Tr [MAPa] (5.26)

σ2
A = 2Tr [MAPaMAPa] (5.27)

This fully defines all three metrics and their statistics in a GL-OCBE context. In the next

section we will simplify these expressions for implementation with the BL-OCBE. Additionally, a

new combined metric will be defined that has a specific property specific to the BL-OCBE.

5.4 BL-OCBE Distance Metrics

The BL-OCBE metrics are obtained via simplification of the GL-OCBE metrics in a similar

process to the BL-OCBE derivation. In this section we define all three OCBE metrics in a BL-

OCBE context as well as define a new combined metric.

Starting with the control metric, the control estimate deviation for the BL-OCBE estimate

is defined in Eq. 5.28.

û(t) − ū(t) ≈ − Q̃(t)B(t)TΦpp(t, tk−1)P̄
−1
k−1∣k−1 [δx̄k−1∣k−1 − δx̂k−1∣k] (5.28)

=Q̃(t)B(t)TΦpp(t, tk−1)P̄
−1
k−1∣k−1Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk∣tk−1))]

=Q̃(t)B(t)TΦpp(t, tk−1)P̄
−1
k−1∣k−1Lk−1 [ε⃗k − H̃kη̄k∣k−1]

Subbing this into the definition of the metric we obtain the BL-OCBE control distance metric as

shown in Eqs. 5.30 and 5.30.

DC = [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]
T
MC [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (5.29)

MC =
1

2
LTk−1P̄

−1
k−1∣k−1 [∫

tk

tk−1
Φpp(τ, tk−1)

TB(τ)Q̃(τ)B(τ)TΦpp(τ, tk−1)dτ] P̄
−1
k−1∣k−1Lk−1 (5.30)

= −
1

2
LTk−1P̄

−1
k−1∣k−1ΦT

pp (ΦxpΦ
T
xx)ΦppP̄

−1
k−1∣k−1Lk−1
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An important result is that the metric gain matrix is equivalent to a product of already calculated

portions of the STM, thus the BL-OCBE version of the metric does not require any additional

integration. This makes it far more implementable into already existing systems. The resulting

mean and variance statistics for this metric are defined below.

µC = Tr [MC (Rk + H̃kP̄k∣k−1H̃
T
k )] (5.31)

σ2
C = 2Tr [MC (Rk + H̃kP̄k∣k−1H̃

T
k )MC (Rk + H̃kP̄k∣k−1H̃

T
k )] (5.32)

Moving to the measurement metric, the postfit measurement residual for the BL-OCBE is

defined in Eq. 5.33.

Y⃗k − h(tk, x̂k∣k) ≈ [Y⃗k − h(tk, x̃k)] − H̃kδx̂k∣k (5.33)

= (Ip×p − H̃kLk) [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]

= (Ip×p − H̃kLk) [ε⃗k − H̃kη̄k∣k−1]

Plugging this result into the nonlinear definition of the OCBE measurement metric, we obtain the

BL-OCBE measurement metric as defined in Eqs. 5.34 and 5.35.

DM = [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]
T
MM [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (5.34)

MM =
1

2
(Ip×p − H̃kLk)

T
R−1
k (Ip×p − H̃kLk) (5.35)

The form is very similar to the GL-OCBE measurement metric other than the missing bias terms.

Its also important to note that the BL-OCBE control and measurement metrics are both solely

functions of the filter innovations with different gain matrices. This means the metrics will display

the exact same behavior (i.e. both will detect or not detect simultaneously) when scalar measure-

ments are used. This generally means there is no use in using both metrics simultaneously in these

situations. The associated mean and variance for this metric are calculated below.

µM = Tr [MM (Rk + H̃kP̄k∣k−1H̃
T
k )] (5.36)
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σ2
M = 2Tr [MM (Rk + H̃kP̄k∣k−1H̃

T
k )MM (Rk + H̃kP̄k∣k−1H̃

T
k )] (5.37)

To obtain the BL-OCBE a priori state distance metric, we first define the a priori state

estimate deviation as shown below.

x̄k−1∣k−1 − x̂k−1∣k = −Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (5.38)

= −Lk−1 [ε⃗ − H̃kη̄k∣k−1]

Plugging this result into the nonlinear OCBE a priori state distance metric, we obtain the BL-

OCBE a priori state distance metric as shown in Eqs. 5.39 and 5.40. The associated mean and

variance are defined in Eqs. 5.41 and 5.42.

DA = [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]
T
MA [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))] (5.39)

MA =
1

2
LTk−1P̄

−1
k−1∣k−1Lk−1 (5.40)

µA = Tr [MA (Rk + H̃kP̄k∣k−1H̃
T
k )] (5.41)

σ2
A = 2Tr [MA (Rk + H̃kP̄k∣k−1H̃

T
k )MA (Rk + H̃kP̄k∣k−1H̃

T
k )] (5.42)

Just like the previous two BL-OCBE metrics, this metric is a function of the filter innovations

weighted by a gain matrix. This means that all three metrics are completely coupled for scalar

measurement. If one detects a measurement the other two will as well. This means that only one

metric is necessary to implement for maneuver detection purposes. Instead of selecting one of the

metrics defined here, we define a combined metric, which is equal to the cost function of the OCBE.

Summing the three BL-OCBE metrics we obtain the BL-OCBE distance metric as defined in Eqs.

5.43 and 5.44.

DJ =DA +DM +DC (5.43)

= [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]
T
MJ [δy⃗k − H̃k (δx̄k∣k−1 + v⃗x(tk))]
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MJ =
1

2
(Rk + H̃kP̄k∣k−1H̃

T
k )

−1
(5.44)

Other than having the significance that this metric defines the OCBE, it also has a special

property. Because its gain matrix is a scalar multiple of the inverse of the covariance of the metric’s

random vector, the metric may be reformulated as the sum of p (the number of measurements at

tk) independent-identically distributed zero-mean Gaussian random variables with unit variance.

A metric of this form is identical to a χ2 random variable with p degrees of freedom (Eq. 5.45).

DJ =
1

2
χ2
p (5.45)

Thus, for this metric Pearson’s approximation is unnecessary - an exact relation to a χ2 statistic is

known. The χ2-based maneuver detection method may be employed using this mapping as opposed

to Pearson’s Approximation (Eq. 5.8). To complete our definition of this metric we calculate its

mean and variance as defined below.

µJ = p/2 (5.46)

σ2
J = p/2 (5.47)

It is interesting to note that the mean, variance, and threshold associated with this metric are

independent of the assumed dynamic uncertainty - the one tuneable parameter the user may adjust

to improve tracking. This result will be discussed in greater depth during the development of the

Adaptive BL-OCBE in Chapter 6.

The BL-OCBE distance metric encompasses all three forms of error: a priori state error,

measurement error, and dynamics mismodeling. We obtained an analytical result that tells us

this metric has an exact relation to a known χ2 statistic, which allows for more precise maneuver

detection. After a maneuver is detected the maneuver reconstruction process commences. The

control estimates are a reconstruction in themselves, but it is possible to extract more information.

In the next section we will discuss a method for estimating natural dynamics using the estimated

control profiles.



108

5.5 Natural Dynamics Estimation with Optimal Control Policies

The estimated controls that come out of the OCBE model the mismodeled dynamics within

the system. As such they can be used to understand the source of the mismodeling. If that

source is mismodeled natural dynamics we can estimate the parameters of those dynamics via a

method discussed in this section. In this section we develop a cost function meant to estimate solar

radiation pressure and atmospheric drag parameters (the main object-dependent perturbations in

Earth orbit) by projecting the estimated controls on to a basis of these perturbations. For the

purposes of this discussion the term “missing dynamics” refers to the difference (at each time)

in acceleration between the true trajectory and the mismodeled trajectory (without the optimal

control input). This difference identifies approximately how much control effort would be needed

to stay on the true trajectory, which is what we are attempting to estimate via the optimal control

policy. First we identify the similarities between optimal and natural dynamics, and follow this

with a discussion of how these similarities may be used in this estimation method.

5.5.1 Comparison of Optimal and Natural Dynamics

The Optimal Control Policies (OCPs) resulting from the quadratic cost, as defined, may be

used to assess the optimality of natural forces because (like natural forces) they are continuous

and smooth. Figure 5.1 depicts the similarities between natural dynamics and OCPs for a case

where drag and SRP are both mismodeled by 100%. These are evaluated on a nearly circular LEO

trajectory (see LEO parameters in Table 5.2). The acceleration profiles agree almost exactly. There

are only slight misalignments with the acceleration vector (less than 0.5 degrees for all time). Other

than this the magnitude and periodicity of the dynamics are also well preserved. We can use this

property to obtain information about these unknown natural dynamics.

When the boundary time and states are fixed we find that OCPs and the natural dynamics

they replace are almost identical. This demonstrates that natural dynamics tend to minimize the

quadratic control policy. This is likely due to the constraints in the system that limit the optimality
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Figure 5.1: Optimal control policy with mismodeled atmospheric drag and SRP for true boundary
states. (Top) Missing dynamics and OCP magnitudes. (Bottom) Alignment of OCP with missing
dynamics

of the solution. In a typical tracking scenario there will be uncertainty in the boundary estimates, so

it is important to see what occurs when boundary state uncertainty is introduced. In Fig. 5.2 we see

a comparison between natural dynamics and OCPs when 100 m and 0.1 m/s Gaussian uncertainties

are added to the initial and final states and there is a 100% error in both drag and SRP (as in the

previous example). In this dispersed analysis we find that the similarities between the the OCPs

and natural dynamics are not as strong (as is expected), but they still exist. Alignment can differ

a lot at times, but generally stays in the lower range (acute angles). The periodicity is also largely

maintained. The magnitude agreement is not as strong as the nominal case, but differences do

tend to be an order of magnitude less than the true magnitude. For smaller boundary uncertainties

we see better agreement (as would be expected). Reducing the boundary uncertainty we find

dispersed trajectories that agree more with truth, and as we iterate and converge toward truth we

find behavior closer to truth as well. While this dispersed analysis shows deviation from the true

trajectory we still see signatures of the underlying true dynamics.

Through the nominal analysis we have identified a relation between OCPs and the natural

dynamics it is replacing. For the nominal (true boundary state case) the accelerations are nearly
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Figure 5.2: Optimal control policy with mismodeled atmospheric drag and SRP for dispersed
boundary states. (Top) Missing dynamics and OCP magnitudes (Middle) Alignment of OCP
with missing dynamics. (Bottom) Magnitude of differenced OCP and missing natural dynamic
accelerations.

identical. Deviating from the boundary states we find larger differences in the accelerations, but

similarities still remain. From these results we hypothesize that OCPs may be used to estimate the

natural dynamics they are replacing.

5.5.2 Estimating Natural Dynamics Using OCPs

Following the hypothesis of the previous subsection, we develop a cost function that includes

linearly mismodeled atmospheric drag and SRP (i.e. limited to coefficient errors) that act in place

of the OCP. Essentially, when this cost function is minimized with respect to the mismodeleing

parameters the degree to which each force is mismodeled may be quantified, and in an iterative

process the OCP can be removed in place of updated natural dynamics. This cost function (with a

quadratic form similar to the OCP cost function) is shown in Eqn. 5.48 with additional definitions

in Eqns. 5.49 and 5.50.

J (∆C⃗) = ∫

tb

ta

1

2
(û(τ) −A(x⃗∗(τ), τ)∆C⃗)

T
(û(τ) −A(x⃗∗(τ), τ)∆C⃗)dτ (5.48)
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A(x⃗(t), t) = [ ãDrag(t, x⃗(t)) ãSRP (t, x⃗(t)) ] = [ −1
2ρ(r)vrelv⃗rel pSRP (

S r⃗
Sr

) ] (5.49)

∆C⃗ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∆B

∆P

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.50)

We seek the adjustments to the perturbation parameters (∆C⃗) that minimize the cost. This

seeks to pull natural dynamics out of the optimal control, thus driving the control toward zero

so that a natural (ballistic) trajectory may be obtained. Assuming the movements are ballistic

this would drive the system toward the true dynamical model. The minimization and associated

optimal solution are given in Eqns. 5.51 and 5.52, respectively.

∂J

∂∆C⃗
= −∫

tb

ta
(u⃗∗(τ) −A(x⃗∗(τ), τ)∆C⃗)

T
A(x⃗∗(τ), τ)dτ = 0 (5.51)

∆C⃗ = (∫

tb

ta
A(x⃗∗(τ), τ)TA(x⃗∗(τ), τ)dτ)

−1

(∫

tb

ta
A(x⃗∗(τ), τ)T u⃗∗(τ)dτ) (5.52)

Investigating these equations, we find that the process indicates that no update to the dy-

namics is needed (∆C⃗ = 0⃗) when one of two situations occurs: (1) the optimal control policy is

identically zero for all time or (2) the optimal control policy is orthogonal to the plane in which

the drag and SRP perturbations lie. The first case occurs when the iterative estimation proce-

dure is able to fully account for the OCP with drag and SRP mismodeling (a ballistic trajectory is

found). The second case is more common. This occurs when additional error ensures that a ballistic

trajectory cannot be established between the boundary states in the given time. This additional

error typically comes from inaccurate boundary states or unmodeled dynamics such as a maneuver.

These errors cause the parameter estimates to deviate from the truth, but in the case of inaccurate

boundary conditions we can quantify the expected uncertainty in the parameter estimates.

To account for parameter uncertainty as a function of known error we expand the cost function

in terms of uncertainty in the boundary states as shown in Eqn. 5.55 using the results from Eqn.

5.54.

Λ(t, t0) = [ Φpx(t, t0) −Φpp(t, t0)Φxp(tf , t0)
†Φxx(tf , t0) Φpp(t, t0)Φxp(tf , t0)

† ] (5.53)

δu⃗(t) = −Q̃
∂f⃗

∂u⃗

T

Λ(t, t0)δz⃗ (5.54)
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J +∆J = ∫

tb

ta

1

2

⎛

⎝
û(τ) − Q̃

∂f⃗

∂u⃗

T

Λ(t, t0)δz⃗ −A(x̂(τ), τ)∆C⃗
⎞

⎠

T

(û(τ) (5.55)

−Q̃
∂f⃗

∂u⃗

T

Λ(t, t0)δz⃗ −A(x̂(τ), τ)∆C⃗
⎞

⎠
dτ

∆C⃗ = (∫

tb

ta
A(x̂(τ), τ)TA(x̂(τ), τ)dτ)

−1

[∫

tb

ta
A(x̂(τ), τ)T û(τ)dτ (5.56)

−
⎛

⎝
∫

tb

ta
A(x̂(τ), τ)T Q̃

∂f⃗

∂u⃗

T

Λ(t, t0)dτ
⎞

⎠
δz⃗

⎤
⎥
⎥
⎥
⎥
⎦

In this expansion we do not consider deviations in the natural dynamics due to boundary

state uncertainty - a separate analysis indicated this effect to be negligible.

Using expectation operators we find that the expected value for the parameter deviation

estimates is the same as that for the given by Eqn. 5.52, assuming unbiased boundary state

deviaitons. We also obtain the associated variance-covariance matrix as shown in Eqn. 5.57.

P∆C = (∫

tb

ta
A(x̂(τ), τ)TA(x̂(τ), τ)dτ)

−1 ⎛

⎝
∫

tb

ta
A(x̂(τ), τ)T Q̃

∂f⃗

∂u⃗

T

Λ(t, t0)dτ
⎞

⎠
Pz (5.57)

×(∫

tb

ta
Λ(t, t0)

T ∂f⃗

∂u⃗
Q̃A(x̂(τ), τ)dτ)(∫

tb

ta
A(x̂(τ), τ)TA(x̂(τ), τ)dτ)

−1

To verify this analytical model, a Monte Carlo analysis was performed to determine the non-

linear effect of boundary state uncertainty (Fig. 3). This analysis includes 100 m and 1 m?s error

on the boundary states at an orbital altitude of 1000 km (a region where SRP and atmospheric

drag have a similar magnitude). The simulation includes 3,873 nonlinear perturbation parameter

estimates plotted as points with 1-3 sigma envelopes from the linear covariance approximation plot-

ted for comparison. There are definite similarities between the numerical and analytical results.

The covariance envelopes appropriately cover the spread of the nonlinear estimates, with the dens-

est region around truth. The nonlinear results do not have the characteristic elliptical shape that

linear theory predicts. They are more tightly packed along the minor axis of the covariance ellipse,

and they extend too far along the major axis. Additionally, there is a slight rotation between the

nonlinear and linear spreads, but it is hardly perceptible. These deviations from the analytical

model are due to the linearizations made during the analytical formulation that discount pertur-
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bation coupling. In general though, this analytical covariance adequately represents the expected

deviation in parameter estimates due to boundary state error.
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Figure 5.3: Nonlinear dispersed boundary state analysis with comparison to analytical covariance
envelopes (1-3 σ).

Typically, this estimation procedure must be performed iteratively because the original OCP

trajectory does not exactly correspond to the true trajectory due to the slight differences between

the OCP and true perturbations as mentioned earlier. The complete iterative method is described

below:

(1) Obtain initial/final states, time of flight, uncertainties, and nominal dynamical model (i = 1)

(2) Generate OCP for the given boundary states/times using the ith nominal dynamical model

(3) With the generated OCP trajectory minimize the estimation cost function (Eqn. 5.48)

using Eqn. 5.52

(4) Update the nominal atmospheric drag and SRP parameters as indicated in Eqn. 5.58.

C̃i+1
= C̃i +∆C⃗i (5.58)

(5) Evaluate convergence using one of the following criteria:

(a) Option 1 - Compare the distance metrics between two successive iterations to check

for convergence: ∣
di+1C (a,b)−d

i
C(a,b)

di+1C (a,b)
∣ < δ
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(b) Option 2 - Compare the dynamics parameter update magnitude compared to magni-

tude of nominal values to check for convergence:

√
(∆C⃗i)

T
W (∆C⃗i)

(C̃i)
T
W (C̃i)

< δ. If the nominal

values are zero, then the denominator may be excluded.

(6) If convergence fails, then let i = i+1 and iterate by returning to step 2. Otherwise continue.

(7) Having converged set the final estimates: C̃est = C̃
i+1

This iterative method has two options for convergence evaluation. These are related, but

each expresses the convergence with a different physical significance. If tolerances are given in

terms of distance metrics Option 1 is preferred, but if tolerances are geared more toward dynamics

parameters Option 2 is preferred. The number of iterations needed to obtain convergence is gen-

erally a function of the boundary state uncertainty and the tolerances set. For the simulations in

this paper we found about five iterations was enough to obtain convergence. In practice, we have

not seen the process diverge, so convergence failures generally only occur when convergence is not

deemed fast enough. These failures are detected by placing a maximum number of iterations on

the process, so that when the process exceeds this iteration limit the estimation is stopped and the

results are flagged with a failure indication.

The distance metric itself generally cannot be used as a convergence metric. Even though

each iteration decreases the distance metric by turning control into natural dynamics, all of the

control policy cannot be attributed perturbation mismodeling. The remaining control is usually

the result of boundary state uncertainty or the presence of some other mismodeled acceleration.

The distance metric remaining after estimating drag and SRP may be used to detect maneuvers in

the same manner as discussed in the previous section. After drag and SRP mismodeling is removed

through estimation, the distance metrics should conform to the probability distribution established

by the boundary state uncertainty. If the remaining value still exceeds the calculated threshold

we can conclude that some other dynamics mismodeling (maneuver) is present. An example of

detecting a maneuver after estimation is provided in the following section.

This process may also be expanded to a batch process where the estimation procedure is run
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for each pair of states, and the estimates are combined in a weighted least-squares batch process.

The estimate and covariance for this batch estimate are given in Eqns. 5.59 and 5.60, respectively.

∆C⃗ = (
N

∑
i=1

P −1
∆Ci)

−1

(
N

∑
i=1

P −1
∆Ci∆C⃗i) (5.59)

P∆C = (
N

∑
i=1

P −1
∆Ci)

−1

(5.60)

In these expressions ∆C⃗i and P∆Ci are the estimate and covariance of the dynamics parameter

deviation for the ith measurement epoch, respectively. This is the recommended implementation of

this algorithm, as it greatly increases the accuracy of the algorithm, and it is easily implementable

in a tracking algorithm. This implementation also allows the user to identify outliers, which can

signify the presence of maneuvers.

5.6 Sample Natural Dynamics Estimation Applications

In this section, we demonstrate the effectiveness of this algorithm through sample tracking

scenarios. In the first simulation we demonstrate the use of this algorithm for LEO and GEO

tracking with mismodeled drag and SRP parameters. In the second simulation, we also estimate

mismodeled drag and SRP, but there is an additional unmodeled maneuver in the data. The true

vehicle dynamics parameters used in these simulations are shown in Table 5.1.

The parameters were chosen to represent realistic objects in orbit. Specifically, the LEO case

uses values consistent with a complete satellite and the GEO example is more representative of

debris (hence the higher area to mass ratio). The LEO values are a combination of a reflectivity

obtained from the TOPEX/POSEIDON spacecraft [62], area to mass ratio calculated from the

dimensions and mass of ESA’s Envisat [3], and a generic drag coefficient given by Vallado [84]. The

GEO area to mass ratio was selected to be a low level for debris, but still higher than most complete

spacecraft based on values given by Herzog and Schildknecht [26]. The higher reflectivity relative

to the LEO example is representative of the fact that SRP-dominated debris generally consists of

the most reflective portions of a spacecraft such as Multi-Layer Insulation (MLI) [17].
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Table 5.1: True Object Parameters for LEO and GEO Simulations

Parameter Notation LEO Value GEO Value Units

Area to Mass Ratio A/m 0.016 0.500 m2/kg
Drag Coefficient CD 2.20 n/a n/a
Refelctivity Coefficient S 1.25 1.50 n/a

5.6.1 Simulation I: Biased Dynamics

This simulation includes two separate cases. One focuses on LEO tracking (drag-dominated)

and the other focuses on GEO tracking (SRP-dominated). Drag is nonexistent at GEO, so esti-

mating it can cause numerical issues. Similarily, drag is far stronger in LEO orbits than SRP for

typical satellite geometries, which leads to issues estimating SRP as accurately. For this reason we

only focus on the dominant perturbation in each regime (though SRP estimates are still reported

for LEO tracking scenarios). Initial Keplerian elements are provided for each of these cases in Table

5.2.

Table 5.2: Initial Keplerian orbital elements for LEO and GEO cases in Simulation I

Parameter Notation LEO Value GEO Value Units

Semimajor Axis a 6878.1363 4.2164E + 07 km
Eccentricity e 0.05 0.01 n/a
Inclination i 50 0.05 deg
Right Asc. of the Asc. Node Ω 0 0 deg
Argument of Perigee ω 0 0 deg
Initial Mean Anomaly M0 0 0 deg

For all propagations two body gravity, J2 perturbations, atmospheric drag, and SRP are

used. Consistent with the motivation of this work, we initially model drag and SRP as zero

magnitude perturbations since we assume that we do not have accurate a priori measures of the

associated dynamics parameters. The states at each observation epoch are infused with 100 m and

0.1 m/s Gaussian error. These states are assumed to be the state estimates from an arbitrary orbit

determination process - obtained via any set of traditional observations (angle, angle rate, range,

Doppler, etc.).
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5.6.1.1 LEO Estimation

In this LEO simulation, state estimates are taken over a period of 360 hours. Long arc state

estimates are reported every 12 hours and short arc estimates are reported every 6 hours (the

estimates were generated separately), thus the long arc estimation uses half as many estimates

in the batch process. Perturbation estimates for each pair of observation epochs and the batch

estimate from this example are shown in Fig. 5.4. It is clear from these results that drag is much

more accurately estimated than SRP, since the in SRP is much larger. This is because drag is the

dominant perturbation having far more effect on the boundary state deviation than SRP does. It

is also clear from these results that the longer arc parameter estimates have a much smaller spread

than the short arc estimates given equal state estimate uncertainties. In practice we will generally

see larger uncertainties for long arcs compared to short arcs, but this example only seeks to show

the reduction in parameter estimate spread as the observation gap is increased. The physical

reasoning behind this is that the boundary uncertainties have more time to average out in a longer

observation gap. Additionally, drag and SRP have more time to perturb the trajectory so their

mismodeling becomes more detectable as the time gap increases.

The evolution of error with increasing number of observation epochs for these different sized

observation gaps is also considered as shown in Fig. 5.5. The x-axis is formatted in terms of time

so that the long arc and short arc can have a side-by-side comparison. We see several important

characteristics in these results. First and foremost, we see that for both long and short arc obser-

vation the percent error in the drag parameter quickly converges to unity magnitude at the 3-σ

level, and sub-unity levels are attained by further observation. This demonstrates the accuracy

of this estimation algorithm. Also, even with just one or two observations from the long arc we

obtain an estimate that is within 20% of truth (3-σ level). This shows the quick convergence of

this algorithm. At this level of convergence we could update the drag dynamical model with each

new observation to improve propagation accuracy and identification at the next observation epoch.

Beyond the accuracy of this estimation method, in these results one can see that even though the
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Figure 5.4: Long and short arc Drag and SRP parameter estimates from each pair of observa-
tion epochs for a tracked LEO object with mismodeled drag and SRP perturbations. The true
parameters, initial modeled values, and batch estimates are indicated.

short arc uses double the amount of observations it yields virtually identical results (in uncertainty

metrics) as compared to the long arc.

Along with the results from the previous figure, the long arc performance demonstrates how

this algorithm is well-suited for data-sparse applications. Data sparse in this context is defined as

observations taken very infrequently (generally less than once per orbit or less). At equal levels of

uncertainty in the boundary states a longer observation gap is preferable since it averages out that

uncertainty over the entire trajectory, which yields parameter estimates with smaller uncertainty.

In practice longer observation gaps generally include larger boundary uncertainty, which would

decrease performance to a degree but this is mitigated by this algorithm’s preference for long

observation gaps.

5.6.1.2 GEO Estimation

When SRP is not completely dominated by drag and it is given time to affect the trajectory,

then its estimates become far more accurate. We demonstrate this with a GEO tracking example,
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Figure 5.5: Percent error in the drag parameter estimate over time for LEO simulation. Blue
represents the error of the actual estimates in these simulations and black represents the 3-σ
envelope associated with these estimates. Long and short arcs are represented by solid and dashed
lines, respectively.

where drag is nonexistent. As with the LEO example, state estimates are given on long and short

arcs with 40 and 20 hour observation gaps, respectively. This is done for 1200 hours. State estimates

are infused with 100m and 0.1 m/s Gaussian error in each direction.

The SRP parameter estimates for each pair of observation epochs are shown in Fig. 5.6.

Even when SRP is the dominant perturbation it still has a large estimation spread because it is a

weak force. Subtle changes in the SRP parameter over short observation gaps do not produce large

state differences, which means the spread in the estimates is large in order to attain the levels of

uncertainty in the boundary states. This is counteracted by one of two things: (1) reducing the

uncertainty in the state estimates, and/or (2) introducing larger observation gaps. Considering the

latter requires far less effort and is also reflective of astrodynamics applications, it is the preferred

method. We can see this reduction in parameter spread for the long arc versus the short arc in Fig.

5.6 just as we saw in the LEO simulation.
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Figure 5.6: SRP parameter estimate histogram for GEO Simulation with long (top) and short
(bottom) arcs. The true parameters, initial modeled values, and batch estimates are indicated.

A similar error study to the one performed for the LEO example is shown in Fig. 5.7.

In these results we can make similar conclusions to the ones from the LEO simulation. First,

the algorithm accurately estimates the SRP parameter using both the long and short arcs. The

algorithm attains unity level percent deviation from truth (1-σ) after approximately 10 long arc

observations, and it converges even more with further observation. In terms of observation gap

results, we find comparable behavior over time between the arcs (with the short arc having double

the number of state estimates). The long arc performs slightly better in terms of uncertainty metrics

for equivalent state estimate uncertainties. Again we would expect to see larger uncertainties for

longer observation gaps (relative to shorter observation gaps), but we can conclude that in general

the increased observation gap performs better on a per estimate basis compared to shorter gaps

when boundary uncertainty is comparable. Also the effect of increasing boundary uncertainty with

increased observation gap time is mitigated by this improved performance.

From these LEO and GEO tracking simulations we have demonstrated the accuracy of this

algorithm as a batch process, and how that accuracy changes as a function of the time gaps

between those observations. This showed that this algorithm is well suited for data-sparse tracking
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Figure 5.7: Percent error in the drag parameter estimate over time for GEO simulation. Blue
represents the error of the actual estimates in these simulations and black represents the 3-σ
envelope associated with these estimates. Long and short arcs are represented by solid and dashed
lines, respectively.

applications, which is generally the case for astrodynamics tracking of defunct, natural, and active

objects (especially broad SSA surveying). We have also demonstrated broad applicability of the

algorithm with accurate results in LEO, GEO, and mid-altitude (as shown in the Monte Carlo

results from the previous section) simulations.

5.6.2 Simulation II: Biased Dynamics and Unmodeled Maneuver

In the previous simulation, we saw how this algorithm operated in the presence of mismodeled

natural dynamics. In this simulation there are also mismodeled drag and SRP perturbations,

but additionally there is an unmodeled cross-track impulsive maneuver that occurs in one of the

observation gaps. The initial conditions for this simulation are the same as the previous LEO case.

The impulse parameters are summarized in Table 5.3. Similarly, one state estimate is given every

6 hours for 360 continuous hours with 100 m and 0.1 m/s Gaussian noise included in each ECI

direction.

Parameter estimates for this simulation are shown in Fig. 5.8. In these results we see almost
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Table 5.3: Timing and Impulse Values for Test Case IV

Parameter Notation Value Units

Initial Time t0 0 hr
Impulse Time timp 37.501 hr
Final Time tf 360 hr
Impulse Magnitude ∆Vman 2.5 m/s

identical behavior to the LEO tracking case with the short arc observation gaps as is expected since

the setups are largely the same other than the maneuver in this case. We still achieve accuracy in

the drag estimate on the order of 1% deviation from truth (3-σ), and the spread in drag and SRP

estimates is equivalent to the non-maneuver case. There is no clear outlier in the estimates that

correspond to the maneuver for two reasons: (1) drag never acts in the cross-track direction and

(2) SRP is weekly correlated with cross-track motions in the geometry and any effect is washed out

in its large spread. In different geometries maneuvers may leave a clear trace in estimate space,

and through this we can detect them, but there are additional ways of detecting them too.
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Figure 5.8: Drag and SRP parameter estimates for each pair of observation epochs for a tracked
LEO object with mismodeled Drag and SRP perturbations and an unmodeled impulsive maneuver.
True parameters, initial modeled values, and the batch estimate are indicated.

A maneuver’s presence is most clearly seen in control distance metric-space. The distance

metrics calculated between each observation gap are shown in Fig. 5.9 - these are the integrated

control profiles for all pairs of observation epochs. Values are provided from both before and after
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dynamics parameter estimation. In general, the distance metrics are positively skewed with a

small mean created by the boundary state uncertainty, as derived previously. Sensing a maneuver

requires that its associated distance metric be beyond the threshold set by the boundary state

uncertainty (indicated on the graph). As such, small maneuvers can get ignored, but we clearly see

the maneuver as the right outlier in both the distributions. Consistent mismodeling presents itself

as a positive shift in the distribution - the clear shift we see in the two distributions.

One-time maneuvers, on the other hand, will present as outliers in the control distance metric

distribution. That is what we see in this distribution. The value of the distance metric also puts

an upper bound on the maneuver (3.44 m/s after parameter estimation). By subtracting out the

average due to boundary uncertainty, we can obtain an even more realistic value to characterize

the maneuver in ∆V -space. In this case we can estimate the maneuver at 2.84 m/s after removing

parameter mismodeling and boundary uncertainty effects, which is quite close to the true value of

2.5 m/s. Additionally, the OCP generated for this observation gap can be used to reconstruct the

maneuver. It shows the maneuver as largely a cross-track acceleration, though the result is smooth

as opposed to impulsive. With all this information we have shown this algorithm’s ability to detect

and characterize an unmodeled maneuver as well as consistent dynamics mismodeling.
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Figure 5.9: Control distance metrics between each measurement epoch for LEO simulation with
unmodeled maneuver. Metrics from before estimation are provided (top) as well as from after
parameter estimation (bottom).
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5.7 Sample Maneuver Detection and Reconstruction with the OCBE

In the following sections, we provide the maneuver detection results from the LEO and GEO-

based simulations using the BL-OCBE in Chapter 4. Since the simulations are the same we will

not define the setup again, rather just skip to an analysis of the distance metrics that come out of

the BL-OCBE.

5.7.1 Tracking a Spacecraft in LEO with Mismodeled Drag and an Unknown

Maneuver

Recalling the simulation from Section 4.2, we have a spacecraft in LEO with atmospheric drag

mismodeling and an unknown cross-track maneuver that is being observed once an hour for 150

consecutive hours with range and range-rate observations. In the original analysis we used postfit

measurement residuals to motivate the selection of an appropriate assumed dynamic uncertainty,

but in actuality these values are set using maneuver detection results. The associated maneuver

detection results for the BL-OCBE and Nonlinear OCBE are presented in the following sections.

5.7.1.1 Tracking with the BL-OCBE

As with the original discussion, we first run the observations at a low assumed dynamic

uncertainty (σQ = 10−12 m/s2) to determine the presence of mismodeling within the system. The

resulting metric-to-threshold ratios are shown in Fig. 5.10. These results clearly indicate a slow

build up of error, and then a large event that results in maneuvers being detected for all measure-

ments afterward. As before, we make the hypothesis that the initial build up of error is due to a

consistent mismodeling while the large deviation represents represents a one-time event.

To account for the initial mismodeling we increase the assumed dynamic uncertainty for all

time to a new value such that the metrics before the large events are distributed appropriately

without large detections. The resulting value is σQ = 2 × 10−8 m/s2, and the corresponding metric-

to-threshold ratios are depicted in Fig. 5.11. It is clear that the first group of metrics are distributed
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as would be analytically predicted, but it is impossible to accurately see past the large jump in the

metrics because this likely represents an uncompensated maneuver that leads to filter divergence.

To account for it we set the assumed dynamic uncertainty for the corresponding measurement epoch

to σQ = 7.3 × 10−5 m/s2 with the resulting distance metric-to-threshold ratios given in Fig. 5.12.

The metrics are distributed as we would expect for a system with no uncompensated maneuvers,

thus it is an indication that we have successfully addressed all statistically significant dynamic

mismodeling within the system.
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Figure 5.10: Distance metric to metric threshold ratio when running the BL-OCBE with σQ = 10−12

m/s2.
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Figure 5.11: Distance metric to metric threshold ratio when running the BL-OCBE with σQ =

2 × 10−8 m/s2.

Now that we compensated for all dynamic mismodeling, we plot the metric-to-threshold ratio

relative to a constant dynamic uncertainty of σQ = 2 × 10−8 m/s2. These ratios are not obtained
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by processing with a constant value, rather it just is used to identify any significant mismodeling

relative to this value. These results are summarized in Fig. 5.13. It is clear from these results

that we have identified the presence of a single maneuver, and all other epochs are subject to

mismodeling on the order of 2× 10−8 m/s2. This completely agrees with truth, thus demonstrating

the effectiveness of this method.
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Figure 5.12: Distance metric-to-threshold ratio when running the BL-OCBE after accounting for
the drag mismodeling and the remaining maneuver
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Figure 5.13: Distance metric-to-threshold when running the BL-OCBE after accounting for the
drag mismodeling and the remaining maneuver. All ratios are taken with respect to an assumed
dynamic uncertainty of σQ = 2 × 10−8 m/s2
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5.7.1.2 Tracking with the Nonlinear OCBE

The same maneuver detection process that was done with the BL-OCBE is completed with

nonlinear OCBE. As such we now utilize all three distance metrics for analysis. The resulting

distance metrics after the atmospheric drag and cross-track maneuver are addressed are shown

in Fig. 5.14. It is clear through each of the three metrics that we have properly accounted for

mismodeling in the system since the metrics remain below the threshold in general with no obvious

correlation between measurement epochs.
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Figure 5.14: Distance metric-to-threshold ratio when running the Nonlinear OCBE after accounting
for the drag mismodeling and the remaining maneuver.

We also provide the metrics with respect to an assumed dynamic uncertainty of σQ = 2×10−8

m/s2 in order to demonstrate the detections that this method makes with respect to this level of

mismodeling (Fig. 5.15). The one cross-track maneuver clearly stands out it this analysis in all

three metrics. If we plotted these metric-to-threshold ratios relative to a smaller assumed dynamic

uncertainty we would see a slight shift upward in the metrics as a whole to represent the presence

of drag mismodeling, but this mismodeling is not large enough to detect consistently.

Between this analysis and that of the BL-OCBE, it is clear that this maneuver detection

method is able to identify consistent mismodeling due to things like natural dynamics mismodeling

in addition to seeing actuated maneuvers. The BL-OCBE results are good, but the diversity that

results from using three metrics with the Nonlinear OCBE provides additional level of discrimina-

tion in any detection made. Thus, it is less likely that the Nonlinear OCBE makes a false detection

for a given threshold percentile.



128

Measurement Index
50 100 150

D
C

/D
C

,t
h
re

s
h
 (

N
o

is
e

 F
lo

o
r)

10
-4

10
-2

10
0

10
2

10
4

10
6

Measurement Index
50 100 150

D
M

/D
M

,t
h
re

s
h
 (

N
o

is
e

 F
lo

o
r)

10
-4

10
-2

10
0

10
2

10
4

Metric Mean Threshold

Measurement Index
50 100 150

D
A

/D
A

,t
h
re

s
h
 (

N
o

is
e

 F
lo

o
r)

10
-4

10
-2

10
0

10
2

10
4

10
6

Figure 5.15: Distance metric-to-threshold when running the Nonlinear OCBE after accounting for
the drag mismodeling and the remaining maneuver. All ratios are taken with respect to an assumed
dynamic uncertainty of σQ = 2 × 10−8 m/s2

5.7.2 Tracking a Spacecraft in GEO with Unknown Stationkeeping Maneuvers

Recalling the simulation from Section 4.3, we are observing a target in GEO that is undergoing

unknown stationkeeping maneuvers. Observations include range and angles for two hours a night

(every 100 seconds during that 2 hours). As with the previous simulation we will now discuss the

maneuver detection results for this simulation using the BL-OCBE and the Nonlinear OCBE in

the following two sections.

5.7.2.1 Tracking with the BL-OCBE

Following the development from Chapter 4, we originally process the measurements with a

constant low value of the assumed dynamic uncertainty (σQ = 10−10 m/s2) in order to determine

the presence of mismodeling above this level. The resulting distance metrics are plotted in Fig.

5.16. These results clearly indicate that the first 200 measurements are properly modeled with no

sudden events or small mismodeling that builds over time. Just past the 200th measurement, there

is a sudden even that leads to quick divergence in the metric, and the metric never recovers. This

likely indicates a strong actuated maneuver or a similar type of event.

To account for this observed event we adjust the assumed dynamic uncertainty for that

specific measurement epoch until the distance metric is pushed below the threshold, thus indicating

we have compensated for the mismodeling. The resulting metrics are shown in Fig. 5.17. It is
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clear that the original detection was a quick event since compensation only requires adjusting the

assumed dynamic uncertainty for that single epoch. However, it is clear an uncorrelated event

occurs much further down in the observations. Just short of the 900th measurement there is a

sudden jump in the distance metrics that vastly exceeds the metric threshold, and the metrics

never recover after it. It exhibits similar behavior to the first detection.
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Figure 5.16: Distance metric to metric threshold ratio when running the BL-OCBE with σQ = 10−10

m/s2.
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Figure 5.17: Distance metric to metric threshold ratio when running the BL-OCBE after accounting
for the first maneuver.

Since this new detection behaves in a similar manner to the first, we compensate for it in

a similar manner - by adjusting the assumed dynamic uncertainty for that specific measurement

epoch until the metric is pushed below the threshold. The resulting distance metrics are plotted in

Fig. 5.18. These results verify that we have compensated for all statistically significant dynamic
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mismodeling since the metrics have a distribution as analytically predicted. There are a total of

12 detections in this data (not including the two true detections), which corresponds to 1.10% of

all epochs. For this analysis we use a threshold percentile of 99%, so this number of detections

is expected. We can more clearly indicate the actual detections by plotting the metrics obtained

with a constant low assumed dynamic uncertainty (σQ = 10−10 m/s2). These metrics are plotted in

Fig. 5.19. The two maneuvers clearly stand out as single events that do not have a deterministic

effect on the metrics directly after the detection. This indicates a successful compensation for the

maneuvers. The results in Chapter 4 provide a full reconstruction of these two events.
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Figure 5.18: Distance metric-to-threshold ratio when running the BL-OCBE after accounting for
the drag mismodeling and the remaining maneuver
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Figure 5.19: Distance metric-to-threshold when running the BL-OCBE after accounting for the
drag mismodeling and the remaining maneuver. All ratios are taken with respect to an assumed
dynamic uncertainty of σQ = 10−10 m/s2

These maneuver detection results clearly indicate the presence of the two maneuvers with all
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other detections being attributed to outliers in the measurements. Beyond the detections we are

able to obtain full maneuver reconstructions through the control estimates as well. In Chapter 6,

we discuss a method for eliminating these false detections.

5.7.2.2 Tracking with the Nonlinear OCBE

The BL-OCBE results clearly indicated successful detection and reconstruction of the two

stationkeeping results, however there are false detections that accompany this due to the probabilis-

tic nature of the hypothesis testing. We can limit these false detections within the Nonlinear OCBE

by employing all three metrics and defining a detection as when all three metrics simultaneously

exceed their thresholds.
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Figure 5.20: Distance metric-to-threshold ratio when running the Nonlinear OCBE after accounting
for the drag mismodeling and the remaining maneuver.
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Figure 5.21: Distance metric-to-threshold when running the Nonlinear OCBE after accounting for
the drag mismodeling and the remaining maneuver. All ratios are taken with respect to an assumed
dynamic uncertainty of σQ = 10−10 m/s2.

Following the same process for the BL-OCBE, we are able to identify and compensate for
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the two stationkeeping maneuvers. Since we are using three separate metrics, the user needs to

select one to focus on adjusting. This analysis focuses on adjusting the OCBE control distance

metric. The resulting metrics after compensating for the two maneuvers are shown in Fig. 5.20.

Not including the two true detections, the metrics make 11 (control metric), 10 (measurement

metric), and 13 (a priori metric) detections each. This corresponds to 1.01%, 0.91%, and 1.19% of

all epochs, respectively, which agrees well with the 99% threshold percentile. Defining a detection

as when the metrics simultaneously exceed their thresholds, we can reduce the number of detections

(not including the two true detections) to only 2. Thus, the diversity in metrics for the nonlinear

OCBE is able to reduce the number of false detections from 12 for the BL-OCBE to only 2 for

the Nonlinear OCBE. An additional detection criteria discussed in Chapter 6, can reduce this even

further.

Finally, the two maneuvers can be clearly seen in the metrics when we plot them as functions

of constant low value for the assumed dynamic uncertainty (σQ = 10−10 m/s2) as shown in Fig.

5.21. The metrics clearly stand out in all three metrics. The resulting maneuver reconstructions

for these events are given in the analysis in Chapter 4. The successful detection and reconstruction

of these stationkeeping maneuvers clearly indicates the abilities of this algorithm.

5.8 Conclusions

This chapter developed a maneuver detection method based on the control distance metric

approach of Holzinger, Scheeres, and Alfriend [28]. The method was adapted to reflect the OCBE,

such that the metrics chosen for the Nonlinear OCBE are the three portions of the OCBE cost

functions and the BL-OCBE metric is chosen as the combined OCBE cost function. Using these

metrics we perform a one-tailed χ2 hypothesis test to determine the statistical significance of the

estimates coming out of the OCBE. The method is easily implementable such that it can be applied

in real-time as measurements come in. The process relies upon quantities already computed in the

OCBE, thus the metrics and the associated maneuver detection method are natural fits for the

OCBE algorithm. The resulting metrics clearly tell the user whether there are mismodelings that
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the user has to account for.

After establishing the theory and process behind this maneuver detection method, we demon-

strated it through application to the LEO and GEO simulations described in Chapter 4. In both

examples we were clearly able to detect the presence of both consistent mismodeling (e.g. error in

atmospheric drag model) and the sudden mismodeling due to events like a short-term actuated ma-

neuver. While we are able to successfully detect mismodeling there are also false detections due to

the probabilistic nature of the hypothesis testing. We were able to reduce the effect for the Nonlin-

ear OCBE by defining a detection as when all three metrics simultaneously exceed their respective

thresholds. In the following chapter we will improve upon this false detection rejection method for

both the Nonlinear OCBE and the BL-OCBE, while automating the process of compensating for

detected mismodeling.



Chapter 6

Adaptive Optimal Control Based Estimator

The OCBE as discussed to this point is capable of compensating for mismodeled dynamics

and estimating that mismodeling. However, this compensation requires the user to select a value

for the assumed dynamic uncertainty with each new measurement. This value should reflect the

level of mismodeling in the system, but that is not known a priori. As discussed in Chapter 5,

the maneuver detection method can tell the user whether or not there exists any uncompensated

mismodeled dynamics within the system. Iterating this procedure, the user can adjust the assumed

dynamic uncertainty until a maneuver is no longer detected. This method is very manual, which

precludes application to real-time systems, thus limiting the application of the OCBE. In this

chapter, we discuss a method to automate the selection of the assumed dynamic uncertainty, such

that it properly accounts for any mismodeled dynamics. The resulting algorithm is known as the

Adaptive OCBE.

This discussion will start by defining the automation algorithm. This includes defining the

criterion used to guide the automation, investigating the existence of a solution to this criterion,

a method for obtaining this solution when it exists, and a discussion on when the automation

should be implemeted. Next, we will provide a summary of the Adaptive OCBE in a flowchart

form to allow for easier implementation of the algorithm. Following this we will provide results

from applications of this algorithm to sample tracking scenarios to demonstrate its effectiveness in

a Nonlinear OCBE and BL-OCBE context. Finally, a concluding discussion will summarize the

development of this algorithm and its demonstrated properties. The Adaptive algorithm will be
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developed for the Nonlinear OCBE and BL-OCBE simultaneously since the automation methods

are so similar. Where the methods differ notes, will be made in text.

6.1 OCBE Automation Algorithm

In this section we develop an algorithm that automatically selects the assumed dynamic

uncertainty when applying the OCBE to an estimation problem. This method is heavily based

on the maneuver detection algorithm as developed in Chapter 5. First we will define the criterion

behind the automation. Next we will discuss the existence of a solution that satisfies this criterion.

Following this, we will discuss methods to obtain a solution is it exists. Finally, we provide a

discussion of when this automation should be applied. This discussion addresses the questions

of how to distinguish between a maneuver and an outlier in the data. Making this distinction is

important to ensuring the user does not overcompensate for mismodeling in the system that is not

even present (which leads to degraded tracking), and also to lowering the false detection rate of

this algorithm.

6.1.1 Automation Criterion

The accuracy of the OCBE is strongly linked to choosing an appropriate assumed dynamic

uncertainty. The assumed dynamic uncertainty needs to reflect the actual level of dynamic mis-

modeling in the system. Setting it too high injects too much uncertainty in the system leading to

degraded tracking performance. Setting it too low means mismodeled dynamics are not fully com-

pensated for, so estimates will be biased and inaccurate. We need to find a level that compensates

for mismodeling, but does not overcompensate. The mismodeling is unknown to the user, and it

can change between measurement epochs, which makes it a difficult problem to solve by hand -

especially for large observation sets from highly populated systems as is the case with SSA surveys.

While we have no knowledge of the mismodeled dynamics in the system we are able to detect

their presence. Using the maneuver detection analysis we identified a method to detect maneuvers,

and found that we can compensate for them by adjusting the assumed dynamic uncertainty. To
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automate this process we create an algorithm that selects the assumed dynamic uncertainty which

forces the estimated distance metric to be equal to the mean of the distribution (Eq. 6.1), since

this is the value we should expect when all uncertainties in the system are properly accounted for.

Q̃(t) ∶Dz(Q̃(t)) = µz(Q̃(t)) (6.1)

We make this definition of the automation criterion for an arbitrary distance metric (Dz) and its

associated mean (µz). It should be noted that depending on the metric selected the mean may or

may not be a function of the assumed dynamic uncertainty (e.g. the BL-OCBE metric mean is a

constant, thus it is not a function of the assumed dynamic uncertainty).

It may be argued that a more appropriate choice is to set the metric to zero, since the

Gaussian random vectors are zero-mean. However, doing so would require an infinite amount

of dynamic uncertainty. This is unrealistic, thus we motivate this approach based on a metric

formulation rather than a similar measurement residual based method. It could also be argued

that the assumed dynamic uncertainty should just be chosen once the zero-mean Gaussian random

quantities defining a metric are within a 3-σ envelope. However this approach is vague and does

not give the user an exact metric assess estimator performance. Requiring the mean and metric to

be equal provides an exact equality constraint that is physically significant. It also ensures that on

average the OCBE does not under or over-compensate for detected maneuvers.

The constraint in Eq. 6.1 has many degrees of freedom. The only other constraints on the

matrix are that it is symmetric positive definite for all t ∈ R. To simplify the approach we will

specify the matrix as being a constant across the measurement gap, and reduce it to a scalar

quantity on the diagonals of the p × p matrix. We define this reduced automation criterion in Eq.

6.2.

Q̃(t) =aσ2
QIp×p (6.2)

σQ ∶Dz(σQ) = µz(σQ)

In this definition a is a positive scalar that corrects for units such that the assumed dynamic
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standard deviation (σQ) has the units of u⃗(t). In practice we use the quantity a = tk − tk−1, which

essentially averages out mismodeling across the measurement gap.

Though we have a clearly defined automation criterion we have not addressed the existence

of a solution that satisfies this criterion. In the following section we will address existence of the

solution, and what needs to be done when a solution is not available.

6.1.2 Existence of a Solution

In order to automate the algorithm in manner that satisfies Eq. 6.2 we must also verify

solution existence, and if the solution does not exist in certain cases we must provide a default

assumed dynamic uncertainty. A solution to this criterion is defined as a intersection between

the mean and metric as functions of the assumed dynamic standard deviation. As shown in Fig.

6.1 there are clearly occasions when a solution exists. This is generally the case when there is

deterministic mismodeling in the system that is large enough for the system to detect. It can also

occur when there is no mismodeling and the measurement error is large enough. More generally if

the the calculated metric exceeds the metric mean at small values of σQ, then a solution will exist.
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Figure 6.1: OCBE control distance metric, mean, and ratios as function of the assumed dynamic
uncertainty for a case where the adaptive solution exists.
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Figure 6.2 demonstrates a situation where no solution exists. As can be seen for small values

of σQ the mean exceeds the metric, and this remains the case for the entire domain of assumed

dynamic standard deviations. Clearly, since there are occasions where no solution exists there needs

to be a solution to which to default.
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Figure 6.2: OCBE control distance metric, mean, and threshold as functions of the assumed dy-
namic uncertainty for a case where the adaptive solution does not exist.

.

To this point we have used the phrase “small values of σQ.” This just means values where the

mismodeling is so small that it is impossible to detect because it is below the level of other errors

within the estimation process. When a solution does not exist the algorithm should default to one of

these small values since it represents the level of uncertainty within the estimation problem. We will

define this default solution as the dynamic noise floor (σQ,NF ). It represents the smallest amount

of mismodeling the user cares about. Any mismodeling below this level is considered insignificant

and negligible since it is dominated by other errors. Setting this value too high will result in missed

detections and degraded tracking performance. Setting the value too low may result in spurious

detections. In practice the user should select this value to correspond to what is detectable in the

system based on the state uncertainties in the problem. For example the user could set the dynamic

noise floor as the velocity uncertainty divided by the measurement gap or a multiple of this.
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In order to address both the OCBE and BL-OCBE implementations Figs. ?? and ?? are

provided as examples where the BL-OCBE distance metric has a solution that satisfies the au-

tomation criterion (the former) and when there is no solution satisfying the automation criterion

(the latter). The difference between these results and the Nonlinear OCBE metrics is that the

mean and threshold are not functions of the assumed dynamic uncertainty. The results are very

similar, though. If a metric starts above the mean at the dynamic noise floor, then a solution will

exist. If that metric starts below the metric, then a solution will not exist. In the latter case, the

automation would default to the dynamic noise floor as a solution.
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Figure 6.3: BL-OCBE distance metric, mean, and threshold as a function of the assumed dynamic
uncertainty for a case where the adaptive solution exists.
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Figure 6.4: BL-OCBE distance metric, mean, and threshold ratios as functions of the assumed
dynamic uncertainty for a case where the adaptive solution does not exist.

.
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Having addressed the question of solution existence, and defining a default solution we have

created an automation algorithm that works for any input. This automation only requires the user

to first define a dynamic noise floor, and then it can process all measurements without a human in

the loop. In the next section we will discuss how a solution may be calculated if it is determined

that it exists.

6.1.3 Solution Method

After verifying that a solution exist (the distance metric is greater than or equal to the mean

when evaluated at the noise floor), the next step is to calculate the solution. There is no invertible

relation between the assumed dynamic standard deviation and the the distance metric or its mean,

so the solution may not be obtained analytically. Instead we apply a standard nonlinear root finder

algorithm. Many algorithms would work, but we will focus on application of a Newton-Secant

solver.

As can be seen in Figs. 6.1 and 6.3, near the solution the difference in the mean and metric

is very linear in log-log space. We take advantage of this by pursuing the solution in log-log space

as well. The log-based assumed dynamic standard deviation and the function we are attempting

to zero are defined below.

v = log (σQ) (6.3)

g(v) = log [
Dz(v)

µz(v)
] (6.4)

To solve this nonlinear root finder problem the first step is to attain an upper and lower bound

on the root. This is accomplished by starting with the dynamic noise floor as the lower limit and

a scaled upper bound (σQ,U = ασQ,NF or in log-space vU = log(α)+ vNF where vNF = log(σQ,NF )),

evaluating the scaled upper bound, and iterating until g(vU) < 0 since g(vNF ) > 0. Iterating entails

setting the lower bound as the old upper bound and setting the upper bound as scaled version

of the old upper bound when the inequalities constraints of upper and lower bounds are not yet

achieved.
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Once an upper and lower bound are achieved the next step is to employ the Newton-Secant

method. A simple iterated Newton-Secant method is defined in Eq. 6.5.

v(i)new = v
(i)
L −

⎛
⎜
⎝

g (v
(i)
U )

g (v
(i)
U ) − g (v

(i)
L )

⎞
⎟
⎠
(v
(i)
U − v

(i)
L ) (6.5)

This equations linearly interpolates between the upper and lower bounds to where the root of the

linear interpolation (vnew). This value is then evaluated to see whether it is within the convergence

tolerance of the iterative root finder. If so, the method stops with this as the solution. Otherwise,

the method continues using this as the new upper or lower bound depending on whether the

evaluation exceeds 0 or not. This process is continued until the new evaluation at the ith iteration

is within a set tolerance (∣g(v
(i)
new)∣ < ∆tol). The result is then mapped into an assumed dynamic

uncertainty, which is in turn set as an input for the OCBE evaluation.

When it comes to evaluating g(v), this is where the BL-OCBE and the GL-OCBE differ.

The GL-OCBE requires the user to essentially run the OCBE and take the metric and its statistics

as outputs in order to make this evaluation. However, the BL-OCBE may be equated far more

easily using the results of the OCBE outputs obtained when processing with the dynamic noise

floor. The only term in the metric equation that is a function of the assumed dynamic uncertainty

is the STM product in the propagated a priori uncertainty (ΦxpΦ
T
xx). Using the equivalence this

term has to continuous process noise we can easily express this STM product to be quadratic in

the assumed dynamic uncertainty in the manner shown in Eq. 6.6.

[Φxp (σQ)ΦT
xx] = − ∫

tk

tk−1
Φxx(tk, τ)

∂f

∂u⃗
Q̃(τ)

∂f

∂u⃗

T

ΦT
xx(tk, τ)dτ (6.6)

=(
σQ

σQ,NF
)

2

[Φxp (σQ,NF )ΦT
xx]

As we update this new matrix with each new v(i) (mapped into σ
(i)
Q ), we can easily substitute the

result into Eq. 5.43, which in turn is used to calculate the metric-mean deviation (Eq. 6.4). Being

able to update this value analytically with each new iteration is ideal in a computational sense, thus

making the BL-OCBE an even more streamlined version of the OCBE. Otherwise, the adaptive

algorithm is identical between the different forms of the algorithm.
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Having defined how an automated solution may be obtained, it is now important to discuss

when this automation should be implemented. This is discussed fully in the following section.

6.1.4 When Automation Should be Employed

As discussed this algorithm is designed to adjust the assumed dynamic uncertainty with

each new measurement where the calculated metric exceeds the calculated metric mean. However,

in practice this may not always be best to do. Exceeding the metric mean or even the metric

threshold is not completely indicative of a deterministic dynamic mismodeling - it could just be

an outlier in the measurement error. If we compensate for every slight deviation from the mean

we will overcompensate for non-existing maneuvers and as a result artificially degrade our tracking

accuracy. To account for this we need a method to differentiate between deterministic mismodeling

and outliers in the measurement error.

The method we propose here, is known as a maneuver compensation delay. When a metric

exceeds its threshold, we flag this as a detection however we do not compensate for the detection

immediately. Instead we wait until ndelay detections are made successively, where ndelay is a user

defined integer number of successive detections. After this limit is hit the algorithm automatically

returns to the first detection, compensates for it using the automation algorithm defined here and

proceeds to following measurement. This approach attacks the two types of detections where they

differ. Measurement outliers are unique events. The coupling with future estimates is limited,

thus one detection is highly unlikely to trigger a second detection at the next measurement epoch.

However, deterministic mismodelings are completely coupled. If the mismodeling is left uncom-

pensated at one measurement epoch the next estimate will still have that deterministic error in it,

thus it is far more likely to trigger a new detection. Applying this maneuver compensation delay

ands another level of screening for detections. It allows us to segregate out false detections, thus

improving the accuracy of the OCBE as a state estimate, a maneuver detection algorithm, and a

maneuver reconstruction algorithm.

An additional level of screening for Nonlinear OCBE and GL-OCBE implementations is using
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multiple metrics to define a detection. Since the control, measurement, and a priori metrics are

not completely coupled for these estimators it is possible for one to register a detection and others

not for the same measurement. By defining a detection to be when all three metrics exceed their

respective thresholds simultaneously, we reduce the chance of false detections. Such a method is not

possible for the BL-OCBE since its three metrics are completely coupled. As such, to achieve similar

false detection rejection efficiency the value of ndelay employed for the BL-OCBE will generally be

higher than a similar GL-OCBE implementation.

When all metrics have exceeded their thresholds and the delay limit is reached, we now employ

the automation algorithm discussed in this Chapter. In all other cases we stick to the dynamic

noise floor. This method of implementation greatly reduces the chance of a false detection, but it

delays maneuver reconstruction. While this is not ideal, the algorithm is still capable of real-time

maneuver detection. The detections are made as new measurements are processed. At this point

the detection may represent a false detection or a true maneuver, but it is still a real-time detection.

The slight delay in detection verification and maneuver reconstruction are worthwhile with the level

of accuracy that is achieved.

In the following the section we blend the OCBE algorithm, this maneuver detection algorithm,

the maneuver compensation delay, and the automation method into a single algorithm known as

the Adaptive OCBE. In this definition of the algorithm we provide a flowchart description of the

algorithm that illustrates what steps the user must take to implement the algorithm and how it

processes measurements automatically given a few inputs to initialize it.

6.1.5 Adaptive OCBE Algorithm Summary

To summarize the Adaptive OCBE we provide the flowcharts in Figs. 6.5 and 6.6 to identify

how the algorithm operates once initialized by the user. Figure 6.5 details how the automation

wraps around the actual OCBE in order to create the Adaptive OCBE. It focuses on the definition

of a maneuver detection and how it should be handled within the algorithm.

Figure 6.6 details the actual automated assumed dynamic uncertainty selection process. Both
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Figure 6.5: Flowchart illustrating how the Adaptive OCBE operates.

flowcharts apply regardless of which version of the core estimator is run (i.e. Nonlinear OCBE, GL-

OCBE, or BL-OCBE), and they define all steps that must be taken to implement the algorithm. As
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defined in the flowchart, the user only needs to define five value, then the algorithm automatically

processes all available measurements. The only additional values the user would need to set are

tolerances for necessary condition convergence when implementing the Nonlinear OCBE as opposed

to the linear versions.

!

Start%
Inputs:!! !,!!!!!,!!̅!!!|!!!,!!!!!!|!!!,!!! ,!!!⃗!,!!!,!!!,!" ,!!,!Δ!"# !
Initialize:! ! = 0,!!!(!) = log!!,!" ,!!!(!) = !!(!) + log !!

Evaluate!Upper!Limit!
If!!!!!(!)! < 0!

Update!Limits!
! = ! + 1!

!!(!) = !!(!!!)!
!!(!) = !!(!!!) + log !!

False!

True!

Newton<Secant!Method!

!!"#(!) = !!(!) − !
!!!!(!)!

!!!!(!)!− !!!!(!)!
! !!!(!) − !!(!)!!

!

Evaluate!Upper!Limit!
If!!!!!!"#(!) !! < Δ!"# ! STOP!

True! Map!Solution!to!ADU!
If!!! = 10!!"#(!) !

Determine!Type!of!Bound!
If!!!!!"#(!) ! > 0!

False!

Update!Limits!
! = ! + 1!

!!(!) = !!"#(!!!)!
!!(!) = !!(!!!)!

Update!Limits!
! = ! + 1!

!!(!) = !!(!!!)!
!!(!) = !!"#(!!!)!

True!False!

Figure 6.6: Flowchart illustrating how the Assumed Dynamic Uncertainty is automatically calcu-
lated in the Adaptive OCBE.

With these flowcharts, we have now fully defined the automation criterion that defines the
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Adaptive OCBE, and how it wraps around the OCBE to create a fully integrated algorithm. In the

following section we will apply this algorithm to sample tracking scenarios in order to demonstrate

the algorithms effectiveness in terms of automatically detecting mismodeling, compensating for it,

and tracking the maneuvering target.

6.2 Sample Applications of the Adaptive OCBE

In the following two sections we apply the Adaptive OCBE to the two problems we have

addressed in Chapters 4 and 5 - tracking in LEO and GEO with mismodeled dynamics. We

will focus on results obtained with the Nonlinear OCBE, but make comments about a BL-OCBE

implementation where appropriate.

6.2.1 Tracking a target in LEO with Mismodeled Drag and an Unknown Maneuver

Recalling the simulation from Section 4.2, we have a spacecraft in LEO with atmospheric drag

mismodeling and an unknown cross-track maneuver that is being observed once an hour for 150

consecutive hours with range and range-rate observations. In the original analysis we used postfit

measurement residuals to motivate the selection of an appropriate assumed dynamic uncertainty,

but in actuality these values are set using maneuver detection results. The associated maneuver

detection results for the BL-OCBE and Nonlinear OCBE are presented in the following sections.

In this analysis we define a detection as when all three metrics exceed their thresholds si-

multaneously. We implement the compensation delay algorithm, requiring 2 successive detections

before compensating for a given detection. The resulting distance metrics relative to dynamic noise

floor (σQ,NF = 2×10−8 m/s2) are plotted in Fig. 6.7. In these results there is a clear single detection

made in each of the three metrics. This corresponds to the single impulsive cross-track maneu-

ver. The metrics individually make 2 (control metric), 2 (measurement metric), and 1 (metric)

detection. Combining them, only one detection is made in the total 150 measurements. This one

detection corresponds to the one true maneuver, thus no false detections are made. The metrics

relative to adaptive assumed dynamic uncertainty are shown in Fig. 6.8. There are no obvious
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detections here and the spread about the mean is as expected for a system with fully compensated

mismodeled dynamics, thus indicating successful tracking is achieved.
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Figure 6.7: Distance metric-to-metric threshold ratio relative to dynamic noise floor when applying
the Adaptive OCBE.
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Figure 6.8: Distance metric to metric threshold ratio relative the adaptive assumed dynamic un-
certainty when applying the Adaptive OCBE.

Having successfully detected the maneuver, we now focus on its reconstruction through the

control estimates. These are shown as magnitudes in a Hill Frame as shown in Fig 6.9. The

maneuver clearly stands out, amongst all other control estimates, though the directionality is not

immediately evident due to the presence of atmospheric drag mismodeling. Application of the

OCBE smoother would provide more accurate reconstructions, but this is done in post processing

once more observations are taken post-maneuver. The other control estimates clearly show an

along-track biasing that is consistent with the level of drag mismodeling we should expect.

To confirm the successful tracking we provide the state estimate deviations with respect to

truth with a 3-σ envelope in Fig. 6.10. Remaining consistently below the uncertainty envelope,
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Figure 6.9: Magnitude of estimated controls in Hill frame when applying the Adaptive OCBE.

yet not too low to indicate overcompensation of mismodeling, indicates that we are maintaining

tracking of the target. Position tracking is on the order of 1 m, but balloons to just under 1 km

following the maneuver.
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Figure 6.10: Cartesian state estimate deviations from truth against measurement index with a 3-σ
envelope (red) when applying the Adaptive OCBE.

This example has shown the successful tracking of a target with mismodeled natural dynamics

and an unknown actuated maneuver while obtaining information about those mismodelings through

the control estimates. In this case setting the noise floor to level of mismodeling in the drag improves

tracking, but setting it lower will not result in divergence. Rather, the Adaptive OCBE will make

detections every so often to account for the accumulation of the mismodeling. This mismodeling can

be identified in the distance metrics as correlation between the epochs, and it can be compensated
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for by increasing the dynamic noise floor.

6.2.2 Tracking a target in GEO with Unknown Stationkeeping Maneuvers

Recalling the simulation from Section 4.3, we are observing a target in GEO that is undergoing

unknown stationkeeping maneuvers. Observations include range and angles for two hours a night

(every 100 seconds during that 2 hours). As with the previous simulation we will now discuss the

maneuver detection results for this simulation using the BL-OCBE and the Nonlinear OCBE in

the following two sections.

As discussed in the algorithm development, detected maneuvers are defined as when all three

metrics exceed their respective thresholds simultaneously. The delay algorithm requires two succes-

sive maneuvers be detected before addressing it with an adjusted dynamic uncertainty. This helps

to differentiate between measurement outliers and true maneuvers so that the state uncertainty

does not become artificially over inflated. This analysis uses a 99% threshold percentile for maneu-

ver detection. When successive maneuvers are detected, an assumed dynamic standard deviation

is chosen to ensure the mean of the control metric is equal to the calculated metric. The dynamic

noise floor is set to σQ,NF = 10−10 m/s2.

Figure 6.11 shows the metric-threshold ratio for all three metrics. This is defined as the

ratio of the distance metric to the distance metric threshold, thus anything exceeding one is a

detected maneuver for that specific metric. For all three metrics we see the expected dispersion

about the mean of the distribution with approximately one percent of the metrics exceeding the

threshold (1.19% for the control metric, 1.10% for the measurement metric, and 1.37% for the a

priori metric). In total there are 4 epochs where the three metrics simultaneously exceed their

thresholds. However, when implementing the delay mechanism only two of these epochs stand out

as true detected maneuvers. These correlate to the two true maneuvers. This tells us that the

algorithm was able to successfully identify the only true maneuvers without any false detections in

1,094 observations.

While the previous metrics show maneuvers with respect to the noise floor, Fig. 6.12 shows
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maneuvers with respect to the adaptive assumed dynamic uncertainty. These results confirm the

adaptive algorithm is working properly since the two maneuver detection events are removed. This

indicates that the two detected maneuvers have been addressed with a proper level of dynamic

uncertainty. For each metric some events still exceed the threshold, but these are because they

were identified as being outliers rather than deterministic events via the combination of the three

combined metrics and application of the delay mechanism.
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Figure 6.11: Distance metric-to-metric threshold ratio relative to dynamic noise floor when applying
the Adaptive OCBE.
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Figure 6.12: Distance metric to metric threshold ratio relative the adaptive assumed dynamic
uncertainty when applying the Adaptive OCBE.

To this point it is clear that we successfully detected the presence of the only two maneuvers

with no false detections. Our next step is to reconstruct these maneuvers to provide information

on them. The first piece of information are the control estimates we obtained from the estimator.

The magnitude of these controls in the Hill frame are shown in Fig. 6.13. The identified maneuvers

clearly stick out in this plot with the rest of the estimated control being effectively zero. The first

maneuver is heavily biased toward in plane accelerations with the radial and along-track directions
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approximately 2-3 orders of magnitude larger than the cross-track acceleration. This indicates that

the maneuver is an EW maneuver. Similarly, the second maneuver is heavily biased toward the

cross-track direction, which indicates that this is a NS maneuver. Additionally, we may use the

metrics themselves to inform our reconstruction of the maneuvers. Because the maneuvers are one

time events it becomes evident that they represent some non-natural process. This reinforces the

hypothesis that the mismodeling is related to an actuated maneuver. We may also characterize the

maneuvers based on these estimates as 0.525 m/s and 2.535 m/s maneuvers compared to the true

values of 16.8652 m/s and 7.6552 m/s, respectively. Because these estimates are based on optimal

controls they provide a lower bound on the true maneuver, but also give an order of magnitude

estimate.
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Figure 6.13: Magnitude of estimated controls in Hill frame when applying the Adaptive OCBE.

Finally, the results displayed in Fig. 6.14 show the level of tracking obtained with the OCBE.

It is clear that the estimator maintains tracking of the spacecraft throughout both maneuvers and

across all observation gaps. Tracking is attained on the 10 m level, which reflects the uncertainty

in the measurements.

It should be noted that similar maneuver detection results are obtained with angles only

observation. Fig. 6.15 shows the metric-to-threshold ratio results when the algorithm is run with

angles only observation. Just as with the previous simulation, the only two events that are detected

as maneuvers are the two true events. Tracking is not as good with fewer observations giving levels
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of approximately 1 km in position, rather than the 10 m level achieved with range. There are also

observability issues that pop up as would be the case with a Kalman Filter. This does not prevent

a solution, it just leads to tracking falling out of the 3-σ envelope more frequently.
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Figure 6.14: Cartesian state estimate deviations from truth against measurement index with a 3-σ
envelope (red) when applying the Adaptive OCBE.
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Figure 6.15: Distance metric-to-metric threshold ratio relative to the dynamic noise floor when
applying the Adaptive OCBE with angles-only observation.

Application of the BL-OCBE yields very similar similar results except that there is only one

metric to utilize. This means false detections are harder to reject. Using a delay of 2 consecutive

detections, the BL-OCBE detects the true maneuvers and has one false detections. This false

detection may be removed by increasing the delay to 3, though. In general the delay for the BL-

OCBE should be slightly higher than the Nonlinear OCBE in order to promote an equivalent level

of false detection rejection.
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This simulation shows the Adaptive OCBE’s ability to automatically track an object with

mismodeled dynamics as well as detect and reconstruct that mismodeling. The algorithm correctly

identified both maneuvers with no false detections in the 1,094 measurements processed. Even

with fewer observation types the detection aspect of the work does not suffer, though tracking

uncertainty increases due to a decrease in the amount of information.

6.3 Conclusions

In this chapter, we focused on automating the OCBE by developing a criterion to select the

assumed dynamic uncertainty once a maneuver is detected. We defined a maneuver detection as

when all metrics simultaneously exceed their thresholds over ndelay successive epochs. This method

helps to eliminate false detections. Once the maneuver is detected we compensate for it by selecting

an assumed dynamic uncertainty such that the calculated metric and the mean of its distribution

are equal to one another. This method requires the user to set certain properties to initialize the

estimator, but then all measurements are processed with the human out of the loop. Two flowcharts

defining this processed were presented to illustrate how the algorithm is designed, and how it may

be implemented.

We demonstrated the effectiveness of this algorithm via the same two simulations discussed

in Chapter 4 and 5 - tracking targets in LEO and GEO. In both instances the algorithm is ca-

pable of automatically detecting and compensating for mismodeling. In the case of mismodeled

drag, the mismodeling is not statistically significant over one measurement gap, thus detection and

compensation is completed after several observations, but it never goes unaddressed. Adjusting

the dynamic noise floor offers a solution, where the periodic detections are removed, though. In

both examples the actuated maneuvers were successfully detected with no false detections. This

demonstrates the ability of this algorithm to discern between true mismodeling and measurement

outliers in an automated fashion. Being fully automated, this algorithm is far less tedious to apply

and far more applicable to problems of real-time maneuver detection.



Chapter 7

Conclusions and Future Work

Throughout this thesis we have derived, developed, and discussed the Optimal Control Based

Estimator (OCBE). This has included defining the motivation behind the work and where it fits in

the existing literature, derived the estimator and its linear forms, discussed and proved important

properties of the estimator and an accompanying smoother, developed a companion metrics-based

maneuver detection method, automated the algorithm by using the maneuver detection results

to adaptively adjust the assumed dynamic uncertainty, and demonstrated the algorithm through

several sample applications of these algorithms. In this Chapter we will provide a more in depth

summary and discussion of the results documented in this thesis. We will then conclude with

some suggestions for future development of the algorithm, and its application to broader tracking

problems.

7.1 Conclusions

Our development of OCBE started with defining our research goals and the motivation behind

these goals, discussing the existing literature that addresses these research goals in some manner,

and then defining why this research is unique and where it fits in the grander scheme of existing

estimation methods. The OCBE is designed to be an algorithm that is capable state estimation in

dynamically mismodeled systems with data sparse, non-cooperative observation sets while obtaining

information about the mismodeling. In terms of information about the mismodeling, the method

must be capable of identifying the presence of mismodeling, compensating for it, characterize it,
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and reconstruct it. This method must also be capable of automation for application to complex

systems where it is infeasible to put a human in the loop. Additionally, though the algorithm should

be written generally enough to be applied to any type of mechanical system that is observable, we

specifically are looking for algorithms that are applicable to problems within the field of Space

Situational Awareness (SSA) with generalization in terms of the Observer-Orbit setup. Existing

literature provides many methods for attacking portions of this problem. Many different methods

focus specifically on SSA, but these tend to be limited in application or even limited to a specific

observer-orbit combination. Other methods from the fields of system identification and multiple

model estimation are effective at approaching estimation in dynamically mismodeled systems, but

non of the methods are able to achieve these results when being limited to data sparse, non-

cooperative observation and having no control over the observed target. The OCBE is designed to

satisfy this hole in the existing literature, which satisfies a need within the SSA community.

Following the definition of what the OCBE should be designed to accomplish, the next task

was to discuss some necessary background information that would inform the development of the

estimator. This background information included methods for functional optimization of a Bolza-

type cost function, and the control distance metric approach of Holzinger, Scheeres, and Alfriend

[28], which was designed for maneuver detection and object correlation in an SSA context. The

former was necessary to introduce since the OCBE cost function must be optimized via functional

methods. The latter informs the cost function of the OCBE and the maneuver detection method

that is implemented with the OCBE, thus it is important to cover as context for the OCBE. Finally,

the state and adjoint dynamics for SSA applications were defined since these would provided the

basis almost all simulations presented in this thesis.

After defining this necessary background info, we defined and derived the OCBE. This in-

cluded defining the cost function of the OCBE along with its physical and mathematical significance,

deriving necessary conditions for a solution to the Nonlinear OCBE, and demonstrating its existence

under certain conditions. Having found that no analytical solution exists for arbitrary nonlinear

systems, next a linear version of the algorithm was derived and analyzed. The Generalized Linear
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OCBE (GL-OCBE) was arranged into a Kalman-like formulation in order to make comparisons to

this algorithm, which is a standard in the field of estimation theory and optimal in many respects.

It was shown that the GL-OCBE operates like a biased Kalman filter, due to the biasing from a

ballistic trajectory in its nominal trajectory. However it was found that the algorithm is ultimately

unbiased. This means the expectations of its state estimates are truth, and the expectation of the

control estimate is equal to the a priori control model, which indicates that the algorithm assumes

no mismodeling other than what is already assumed in the a priori information - though errors

in the system will induce a non-zero mismodeling estimate, which demonstrates the algorithm’s

robustness to dynamic mismodeling. The GL-OCBE equations were then reduced by assuming a

ballistic nominal trajectory to form the Ballistic Linear OCBE (BL-OCBE). We demonstrated that

this algorithm propagated dynamic uncertainty in a manner identical to continuous process noise,

that the state estimate at the measurement epoch is equivalent to a Kalman filter estimate, and

the state estimate at the a priori epoch is fully equivalent to a smoothed Kalman estimate. Put

together this demonstrates that the BL-OCBE is a generalization of the Kalman algorithm, which

means the BL-OCBE has all of the same optimality claims. Finally, we developed an algorithm that

smoothed the OCBE solutions across all observations epochs such that the result was a smooth

state trajectory and control estimates throughout the entire measurement arc. This derivation

included Nonlinear, GL-OCBE, and BL-OCBE implementations with the latter being proven to be

a generalization of Kalman smoother with the addition of an optimal control estimate.

Having defined and derived the OCBE, we next demonstrated its abilities through sample

applications. This included three different applications: a mismodeled mass-spring-damper (MSD)

system, observation of a target in Low Earth Orbit (LEO), and observation of a target in Geosyn-

chronous Earth Orbit (GEO). Through the MSD example we demonstrated the algorithm on a

linear level. Specifically, we demonstrated the ability of the algorithm to reconstruct both mis-

modeled natural dynamics and unmodeled perturbations. In the LEO example we showed that the

algorithm was able to maintain track of target with sparse observation while detecting consistent

natural dynamics mismodeling and an actuated maneuver. We found in this example that the
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Nonlinear OCBE and BL-OCBE had very similar performance. This was because the observation

gaps and the maneuvers were not large enough to require a nonlinear approach. Application of

the smoother did successfully improve tracking by an order of magnitude. In the GEO example it

was shown that the Nonlinear OCBE and BL-OCBE maintained tracking of the target across long

observation gaps and large stationkeeping maneuvers The Nonlinear OCBE did have better perfor-

mance overall, which is attributed to the fact that it tracked better through a large maneuver and

long observation gaps. Coupled with the LEO example, we showed that the BL-OCBE tracks well

in the face of dynamic mismodeling, but when the linear assumptions are stressed the Nonlinear

OCBE provides better performance.

The uniqueness of the OCBE lies in the optimal control estimates that it outputs. These

controls are models for the mismodeling within the system, and as such we may use them to

detect the presence of statistically significant mismodeling as well as reconstruct it. We define

three metrics for the OCBE that may be used to assess whether the estimates coming out of the

OCBE are statistically significant to the point that represent deterministic mismodeling within the

estimator. The defined method for maneuver detection uses these defined metrics as χ2 statistics in

a 1-tailed hypothesis test. Given that the OCBE operates via application of the GL-OCBE or the

BL-OCBE, the metrics were linearized and simplified for application to these estimators. The three

metrics for the BL-OCBE were shown to be completely dependent, thus a new combined metric was

defined, that could be reduced to a form that is completely equivalent to a χ2 statistic (with the

requirement of any approximations). Beyond this a method for estimating natural dynamics using

the estimated optimal controls was developed and demonstrated. Finally, the maneuver detection

methods were demonstrated through numerical simulation via sample tracking applications.

To this point the OCBE was designed to be capable of state estimation and maneuver detec-

tion and reconstruction in dynamically mismodeled systems with data sparse and non-cooperative

observation sets. However, application to SSA tracking problems is limited by the requirement of

a human in the loop to manually adjust the assumed dynamic uncertainty with the introduction

of each new measurement. To account for this we made the algorithm into an adaptive estimator
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by developing a method to automatically select the assumed dynamic uncertainty. This method

uses the results of the maneuver detection method to automatically select an assumed dynamic

uncertainty such that the resulting distance metric is equivalent to the mean of that metric’s dis-

tribution. This method is only implemented when a maneuver is detected, which was defined to

be when the distance metric simultaneously exceed their respective metrics for ndelay successive

measurement epochs. Once the maneuver is detected, the algorithm automatically compensates for

its presence and reconstructs in via the optimal control estimates. Flowcharts defining this com-

bined algorithm, the Adaptive OCBE (OCBE with maneuver detection and automated assumed

dynamics uncertainty selection), were provided to illustrate how the algorithm might be imple-

mented for application to real-time state estimation and maneuver detection problems. Finally, the

Adaptive OCBE was applied to sample tracking scenarios in order to demonstrate the algorithm’s

effectiveness at maintaining track of a maneuvering object and detecting mismodeled dynamics in

a completely automated fashion.

This thesis detailed the complete development of the OCBE and all of its companion algo-

rithms, with more detailed derivations provided in the Appendix for completeness. The derivation

is kept general, so that it may be implemented for any mechanical system though the maneuver

detection and adaptive developments do primarily focus on an SSA application. The resulting algo-

rithm represents an algorithmic manifestation of the research goal given that it is an algorithm for

real-time state estimation in dynamically mismodeled systems with data sparse and non-cooperative

observation sets while obtaining information about any present mismodelings. In the next section

we present ideas for logical extensions of this work, which would represent significant advancements

in the theory and application of this algorithm.

7.2 Future Work

While the OCBE as designed successfully fulfills the goals of this research, there is always

room to advance these goals to push for an even wider application of this algorithm along with

improved effectiveness. Below, we present a list of logical extensions of the theory and application
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of this work with a specific emphasis on application to problems within SSA.

(1) More efficient numerical solution of nonlinear estimator: The numerical solution to the

Nonlinear OCBE that we obtain is via iteration of the GL-OCBE until necessary converge

within an accepted tolerance of zero. It is suggested that this method be improved by

introducing more efficient nonlinear solvers.

(2) Distinguish maneuvers, measurement anomalies, and invalid observation-target correlation

in real-time: When a mismodeling is detected it can represent dynamic mismodeling, an

anomaly in the measurement (or a priori state estimate), or it may just be an invalid

observation-target correlation (which is akin to a measurement anomaly, but from a differ-

ent source). Measurement anomalies often look like maneuvers, but we remove them via

maneuver compensation delay. To promote real-time application of this work, we suggest

researching a method for distinguishing measurement anomalies from maneuver, so that

they can be dealt with separately. The method could approach the problem from a multi-

hypothesis foundation where the probability of each occurrence is assessed to determine

the most likely cause of the detection.

(3) Compensate for measurement anomalies: The adaptive OCBE accounts for mismodelings

as if they are dynamic in nature. In partnership with the previous suggestion, a method to

compensate for measurement anomalies would offer improved estimator performance, and

fewer false detections. This method would also account false measurement associations by

removing the measurement from the observation set.

(4) Application to multi-target tracking with uncorrelated measurements: The OCBE is sin-

gle target estimator, but for many SSA applications multi-target trackers are necessary

where the observations taken are uncorrelated. Combining the previous suggestions to ad-

dress measurement association, it would advance this estimator significantly to adapt it to

problems with N targets and M uncorrelated measurements.
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(5) Analytical relation between distance metrics and inputs (i.e. measurements and a priori

estimates): To make the maneuver association problem more computationally feasible for

systems with many targets, an analytical mapping between the estimator inputs and the

OCBE distance metrics would allow for much faster maneuver association, thus allowing

for application to multi-target tracking problems.
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Appendix A

Derivation of the GL-OCBE State, Adjoint and Control Estimates

In this appendix a full derivation for the GL-OCBE state, adjoint and control estimates.

This will focus on steps that are not trivial in order to demonstrate how one obtains the estimates

starting with the linearized nonlinear necessary conditions defined in Chapter 3 (Eqs. 3.19 - 3.21).

This derivation starts with the state estimate at the measurement epoch (δx̂k∣k), covers the state

estimate at the a priori epoch (δx̂k−1∣k) next, moves to the adjoint estimate at the a priori epoch

(δp̂k−1∣k), and concludes with optimal control estimate. In this section there is not teatment of the

uncertainties in these estimate. These are reserved for Appendix B.

A.1 State Estimate at the Measurement Epoch

To obtain the GL-OCBE we start with the linearizations made in Theorem 3.1. While that

analysis focuses on the state estimate at the a priori epoch, this derivation will focus on the state

estimate at the measurement epoch since it is possible to draw parallels to existing estimators like

the Kalman Filter. Taking the results of Eqs. 3.19 - 3.21, they are rearranged to solve for δx̂k∣k as
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shown below.

δx̂k∣k =Mk (δx̄k−1∣k−1 − P̄k−1∣k−1p̃k−1) +Nk [p̃k + v⃗p(tk) + H̃
T
k R

−1
k (δy⃗k − H̃kv⃗x(tk))] + v⃗x(tk) (A.1)

Mk = [Φxp + (Φxx −ΦxpP̄
−1
k−1∣k−1) [(H̃T

k R
−1
k H̃kΦxx −Φpx) + (Φpp − H̃

T
k R

−1
k H̃kΦxp) P̄

−1
k−1∣k−1]

−1

⋅ (Φpp − H̃
T
k R

−1
k H̃kΦxp)] P̄

−1
k−1∣k−1

Nk = (Φxx −ΦxpP̄
−1
k−1∣k−1) [(ΦppP̄

−1
k−1∣k−1 −Φpx)

+H̃T
k R

−1
k H̃k (Φxx −ΦxpP̄

−1
k−1∣k−1)]

−1

We will now attempt to reduce this into a Kalman-like formulation by simplification of these gain

matrices. This starts with the gain matrix on the measurement deviation vector, which should

essentially be the Kalman Gain of this estimator (what we will refer to as the OCBE Gain).

Lk =NkH̃
T
k R

−1
k (A.2)

= [(ΦppP̄
−1
k−1∣k−1 −Φpx) (Φxx −ΦxpP̄

−1
k−1∣k−1)

−1
+ H̃T

k R
−1
k H̃k]

−1

H̃T
k R

−1
k

Application of the Schur Identity and subsequent algebraic simplifications leads to the gain matrix

below.

Lk =Pk∣k−1H̃
T
k (Rk + H̃kPk∣k−1H̃

T
k )

−1
(A.3)

Pk∣k−1 = (ΦxxP̄k−1∣k−1 −Φxp) (Φpp −ΦpxP̄k−1∣k−1)
−1

This result seems very comparable to the Kalman Gain other than the Pk∣k−1 matrix. To have

complete equality this matrix must be equivalent to the propagated a priori covariance at the

measurement epoch. The properties of this matrix are discussed in section B.2. This matrix is

referred to as the propagated a priori state quasi-covariance.

Now we will move on to the the gain on the a priori state deviation (Mk). Rearranging this

matrix and subbing in the OCBE Gain.

Mk =ΦxpP̄
−1
k−1∣k−1 −LkH̃kΦxpP̄

−1
k−1∣k−1 (A.4)

+ (Φxx −ΦxpP̄
−1
k−1∣k−1) [(ΦppP̄

−1
k−1∣k−1 −Φpx) + H̃

T
k R

−1
k H̃k (Φxx −ΦxpP̄

−1
k−1∣k−1)]

−1
ΦppP̄

−1
k−1∣k−1
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Making the temporary definitions in Eq. A.5, we expand and rearrange the equation to obtain the

form shown below.

A =ΦppP̄
−1
k−1∣k−1 −Φpx (A.5)

B =H̃T
k R

−1
k H̃k

C =Φxx −ΦxpP̄
−1
k−1∣k−1

Mk = ΦxpP̄
−1
k−1∣k−1 +C (A +BC)

−1
(A +Φpx) −LkH̃kΦxpP̄

−1
k−1∣k−1 (A.6)

= ΦxpP̄
−1
k−1∣k−1 + (I +CA−1B)

−1
(Φxx −ΦxpP̄

−1
k−1∣k−1)

+C (A +BC)
−1 Φpx −LkH̃kΦxpP̄

−1
k−1∣k−1

Further rearranging leads to the form below. This requires rearranging the result and subbing in

the OCBE Gain then canceling out both terms with OCBE Gain.

Mk = [I − (I +CA−1B)
−1

]ΦxpP̄
−1
k−1∣k−1 + (I +CA−1B)

−1
Φxx (A.7)

−LkH̃kΦxpP̄
−1
k−1∣k−1 +C (A +BC)

−1 Φpx

= (I +CA−1B)
−1

Φxx +C (A +BC)
−1 Φpx

Application of the Schur identity to the second term with subsequent simplification leads to the first

form below. Further simplification is shown, where the final step involves subbing in the relations

for the OCBE Gain and Pk∣k−1.

Mk = (I +CA−1B)
−1

Φxx + (I +CA−1B)
−1
CA−1Φpx (A.8)

= (I +CA−1B)
−1

(Φxx +CA
−1Φpx)

= (I +CA−1B)
−1

[(I +CA−1B) −CA−1B] (Φxx +CA
−1Φpx)

= [I −C (A +BC)
−1B] (Φxx +CA

−1Φpx)

= [I −LkH̃k] (Φxx +Pk∣k−1Φpx)

This result is very similar to the Kalman other than the trailing matrix (Φxx+Pk∣k−1Φpx). Properties

of this trailing matrix are discussed in the next subsection.
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The final matrix to consider is Nk. Using the same definitions from A.5, this matrix may be

rewritten and simplified as demonstrated below.

Nk = (Φxx −ΦxpP̄
−1
k−1∣k−1) [(ΦppP̄

−1
k−1∣k−1 −Φpx) + H̃

T
k R

−1
k H̃k (Φxx −ΦxpP̄

−1
k−1∣k−1)]

−1
(A.9)

= C (A +BC)
−1

= (I +CA−1B)
−1
CA−1

= (I +CA−1B)
−1

[(I +CA−1B) −CA−1B]CA−1

= [I −C (A +BC)
−1B]CA−1

= [I −LkH̃k]Pk∣k−1

This simplification involves applying the Schur identity, rearranging the result, and then subbing

in the definitions for the OCBE Gain and Pk∣k−1.

Having completed all necessary simplifications we define the fully simplified state estimate

at the measurement epoch as shown below.

δx̂k∣k = (δx̄k∣k−1 + b̃k + v⃗x(tk)) +Lk [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))] (A.10)

δx̄k∣k−1 = (Φxx +Pk∣k−1Φpx) δx̄k−1∣k−1 (A.11)

b̃k = Pk∣k−1 (p̃k + v⃗p(tk)) − (Φxx +Pk∣k−1Φpx) P̄k−1∣k−1p̃k−1 (A.12)

The form of this estimate is quite similar to the Kalman Filter definition other than the biasing

term (b̃k). Analysis of these equations is provided in section 3.3.

A.2 State Estimate at the a priori Epoch

Having solved for the state estimate at the measurement epoch, the remaining estimates can

be obtained by leveraging this already simplified form. The state estimate at the a priori epoch

defined in terms of the state estimate at the measurement epoch is given below.

δx̂k−1∣k = (Φxx −ΦxpP̄
−1
k−1∣k−1)

−1
[δx̂k∣k −Φxp (P̄

−1
k−1∣k−1δx̄k−1∣k−1 − p̃k−1) − v⃗x(tk)] (A.13)
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Using Eq. A.10, Eq. A.13 may be simplified to a form that is solely a function of the system inputs.

This is shown in the following development.

δx̂k−1∣k = [In×n + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx] δx̄k−1∣k−1 (A.14)

+ P̄k−1∣k−1 (ΦxxP̄k−1∣k−1 −Φxp)
−1

(b̃k +Φxpp̃k−1)

+ P̄k−1∣k−1 (ΦxxP̄k−1∣k−1 −Φxp)
−1
Lk [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))]

=Ik−1 (δx̄k−1∣k−1 + b̃k−1) +Lk−1 [δy⃗k − H̃k (δx̄k∣k−1 + b̃k + v⃗x(tk))]

Ik−1 = In×n + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx (A.15)

Lk−1 =P̄k−1∣k−1 (ΦxxP̄k−1∣k−1 −Φxp)
−1
Lk (A.16)

=P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1
H̃T
k (Rk + H̃kPk∣k−1H̃

T
k )

−1

b̃k−1 = [In×n + P̄k−1∣k−1 (Φpp −ΦpxP̄k−1∣k−1)
−1

Φpx]
−1
P̄k−1∣k−1 (ΦxxP̄k−1∣k−1 −Φxp)

−1
(b̃k +Φxpp̃k−1)

= [(ΦxxP̄k−1∣k−1 −Φxp) P̄
−1
k−1∣k−1 +Pk∣k−1Φpx]

−1
(b̃k +Φxpp̃k−1) (A.17)

= [(ΦxxP̄k−1∣k−1 −Φxp) P̄
−1
k−1∣k−1 +Pk∣k−1Φpx]

−1
(Pk∣k−1 (p̃k + v⃗p(tk))

− [(ΦxxP̄k−1∣k−1 −Φxp) P̄
−1
k−1∣k−1 +Pk∣k−1Φpx] P̄k−1∣k−1p̃k−1)

= [(ΦxxP̄k−1∣k−1 −Φxp) P̄
−1
k−1∣k−1 +Pk∣k−1Φpx]

−1
Pk∣k−1 (p̃k + v⃗p(tk)) − P̄k−1∣k−1p̃k−1

=P̄k−1∣k−1 (Φ−1
pp p̃k − p̃k−1)

This fully defines the state estimate at the a priori epoch. A detailed analysis of the terms

and their specific meanings is provided in section 3.3.

A.3 Adjoint and Optimal Control Estimates

The adjoint estimate is an intermediate value. We care about it only because it gives us

the optimal control estimate, which has far more physical significance. As such we stick with an

estimate of the adjoint at the a priori epoch that is a function of the state estimate at the a priori
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epoch.

δp̂k−1∣k = P̄
−1
k−1∣k−1 (δx̄k−1∣k−1 − δx̂k−1∣k) − p̃k−1∣k (A.18)

Via the results of the Pontryagin Minimum Principle (Eq. 3.9), we can provide a linearized

estimate of the control vector as a function of time in terms of the state estimate at the a priori

epoch. This linearization and solution process are shown below.

δû(t) =û(t) − ũ(t) (A.19)

= [w⃗(t) − Q̃(t)B(t)T v⃗p(t∣tk−1) −Φpp(t, tk−1)p̃k−1]

− Q̃(t)B(t)T [(Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) δx̂k−1∣k +Φpp(t, tk−1)P̄

−1
k−1∣k−1δx̄k−1∣k−1]

ũ(t) = − Q̃(t)B(t)TE [φp(t; tk−1, x̃k−1, p̃k−1)] +E [ū(t)]

With this solution we have covered estimates that come out of the OCBE. In Appendix B,

there is a treatment of the uncertainties of the estimates in order to fully define the estimator. All

analysis of these results is provided in Chapter 3.



Appendix B

Uncertainty Properties of the GL-OCBE

In this appendix we provide the through derivations of the uncertainties associated with the

GL-OCBE. This will include the covariance of the propagated a priori state (P̄k∣k−1), covariance of

the state estimate at the a priori epoch (P̂k−1∣k), covariance of the state estimate at the measurement

epoch (P̂k∣k), and the covariance of the control estimate (P̂u(t∣tk)).

B.1 Uncertainty of the Propagated a priori State

Presented here is a derivation of the covariance of the propagated a priori state (P̄k∣k−1) for

the GL-OCBE. The results may be simplified to also obtain the results for the BL-OCBE.

The covariance we are seeking is of the propagated a priori state with the added stochastic

effects of the biasing term and the state process noise term. This combined metric is defined below.

z⃗ = δx̄(t∣tk−1) + b̃(t∣tk−1) + vx(t∣tk−1) (B.1)

= E [z⃗] + η̄(t∣tk−1)

Subbing in all appropriate values, we solve for the zero mean error term (η̄(t∣tk−1)) as shown below.

η̄(t∣tk−1) = [Φxx(t, tk−1) +P(t∣tk−1)Φpx(t, tk−1)] η̄k−1∣k−1 + [P(t∣tk−1)vp(t∣tk−1) + vx(t∣tk−1)] (B.2)

Following a development similar Tapley, Schutz, and Born [83], the covariance is derived via its

dynamical equation. This requires having a dynamical equation for the zero mean error term. This
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is obtained by differentiating Eq. B.2 with respect to the final time.

˙̄η(t∣tk−1) = [Φ̇xx(t, tk−1) + Ṗ(t∣tk−1)Φpx(t, tk−1) +P(t∣tk−1)Φ̇px(t, tk−1)] η̄k−1∣k−1 (B.3)

+ [Ṗ(t∣tk−1)vp(t∣tk−1) +P(t∣tk−1)v̇p(t∣tk−1) + v̇x(t∣tk−1)]

This dynamical equation requires known derivatives of the state and adjoint process noise terms.

These may be derived via application of the fundamental theorem of calculus [71]. The results are

given below.

v̇x(t∣tk−1) =∫

t

tk−1

d

dt
(Φxx(t, τ))B(τ)w⃗(τ)dτ +Φxx(t, t)B(t)w⃗(t) (B.4)

=Axx(t)vx(t∣tk−1) +Axp(t)vp(t∣tk−1) +B(t)w⃗(t)

v̇p(t∣tk−1) =∫

t

tk−1

d

dt
(Φpx(t, τ))B(τ)w⃗(τ)dτ +Φpx(t, t)B(t)w⃗(t) (B.5)

=Apx(t)vx(t∣tk−1) +App(t)vp(t∣tk−1)

Subbing these results and the other required derivatives into Eq. B.3, a simplified version of the

zero mean error term dynamics are obtained.

˙̄η(t∣tk−1) = [Axx(t) +P(t∣tk−1)Apx(t)] η̄(t∣tk−1) +B(t)w⃗(t) (B.6)

The next step in this derivation is to formally define the covariance and its time derivative.

These are defined below.

P̄ (t∣tk−1) = E [η̄(t∣tk−1)η̄(t∣tk−1)
T ] (B.7)

˙̄P (t∣tk−1) =E [ ˙̄η(t∣tk−1)η̄(t∣tk−1)
T
+ η̄(t∣tk−1) ˙̄η(t∣tk−1)

T ] (B.8)

= [Axx(t) +P(t∣tk−1)Apx(t)]E [η̄(t∣tk−1)η̄(t∣tk−1)
T ]

+E [η̄(t∣tk−1)η̄(t∣tk−1)
T ] [Axx(t) +P(t∣tk−1)Apx(t)]

T

+B(t)E [w⃗(t)η̄(t)T ] +E [η̄(t)w⃗(t)T ]B(t)T
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The final two expectation terms do not have an obvious solution. Subbing in Eq. B.2 we obtain

the incomplete result below.

E [η̄(t)w⃗(t)T ] = [Φxx(t, tk−1) +P(t∣tk−1)Φpx(t, tk−1)]E [η̄k−1∣k−1w⃗(t)T ] (B.9)

+P(t∣tk−1)E [v⃗p(t∣tk−1)w⃗(t)T ] +E [v⃗x(t∣tk−1)w⃗(t)T ]

This result has three expectations that must be evaluated, since there is no set definition for these

random variables relation. The first expectation is identified to be zero since an instantaneous

acceleration cannot effect a past state.

E [η̄k−1∣k−1w⃗(t)T ] = 0 (B.10)

The other two expectations are obtained via the definition of assumed dynamical uncertainty. The

steps in the solution for each expectation are detailed below. The method involves linearization of

time functions, but this is done over an infinitesimal time gap, thus results are exact.

E [v⃗x(t∣tk−1)w⃗(t)T ] =∫
t

tk−1
Φxx(t, τ)B(τ)E [w⃗(τ)w⃗(t)T ]dτ (B.11)

=∫

t

tk−1
Φxx(t, τ)B(τ)Q̃(t)δ(t − τ)dτ

= lim
ε→0

(
1

ε
)∫

t

t− ε
2

Φxx(t, τ)B(τ)Q̃(t)dτ

= lim
ε→0

(
1

ε
)∫

t

t− ε
2

[In×n −Axx(t)(t − τ)] [B(t) − Ḃ(t)(t − τ)] Q̃(t)dτ

=
B(t)Q̃(t)

2

E [v⃗p(t∣tk−1)w⃗(t)T ] =∫
t

tk−1
Φpx(t, τ)B(τ)E [w⃗(τ)w⃗(t)T ]dτ (B.12)

=∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(t)δ(t − τ)dτ

= lim
ε→0

(
1

ε
)∫

t

t− ε
2

Φpx(t, τ)B(τ)Q̃(t)dτ

= − lim
ε→0

(
1

ε
)∫

t

t− ε
2

Apx(t)(t − τ) [B(t) − Ḃ(t)(t − τ)] Q̃(t)dτ

=0
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Plugging all of these results into Eq. B.8, the final dynamical equation of the covariance of the

propagated a priori state is obtained.

˙̄P (t∣tk−1) = [Axx(t) +P(t∣tk−1)Apx(t)] P̄ (t∣tk−1) + P̄ (t∣tk−1) [Axx(t) +Apx(t)P(t∣tk−1)]
T (B.13)

+B(t)Q̃(t)B(t)T

Furthermore, the solution to this dynamical equation (a differential Lyapunov equation) is obtained

as defined below.

P̄ (t∣tk−1) = Ω(t, tk−1)P̄k−1∣k−1Ω(t, tk−1)
T
+ ∫

t

tk−1
Ω(t, τ)B(τ)Q̃(τ)B(τ)TΩ(t, τ)Tdτ (B.14)

Ω̇(t, tk−1) = [Axx(t) +P(t∣tk−1)Apx(t)]Ω(t, tk−1) (B.15)

Ω(tk−1, tk−1) = In×n

This fully defines the covariance matrix of the propagated a priori state for GL-OCBE. While

there is no known analytical solution to this equation in GL-OCBE implementation, there is an

analytical solution for the BL-OCBE implementation (see next section).

B.2 Propagated a priori State Quasi-Covariance

The propagated a priori state quasi-covariance (Pk∣k−1) for the BL-OCBE is equivalent to the

propagated a priori state covariance (P̄k∣k−1), but this is not the case for the GL-OCBE. This is

demonstrated in this section along with a summary of its special properties.

The definition of the propagated a priori state quasi-covariance where the measurement epoch

is varied as t is given below.

P(t∣tk−1) = [Φxx(t, tk−1)P̄k−1∣k−1 −Φxp(t, tk−1)] [Φpp(t, tk−1) −Φpx(t, tk−1)P̄k−1∣k−1]
−1

(B.16)

Notice under this definition that the initial conditions are P(tk−1∣tk−1) = P̄k−1∣k−1. Thus this matrix

has the same initial conditions as P̄k∣k−1. Differentiating this with respect to the final time t and
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simplifying the results, the form shown below is obtained.

Ṗ(t∣tk−1) =Axx(t)P(t∣tk−1) −P(t∣tk−1)App(t) −Axp(t) +P(t∣tk−1)Apx(t)P(t∣tk−1) (B.17)

=Axx(t)P(t∣tk−1) +P(t∣tk−1)Axx(t)
T
+B(t)Q̃(t)B(t)T +P(t∣tk−1)Apx(t)P(t∣tk−1)

It is interesting to note that this dynamical equation is a matrix Riccati differential equation

given that Apx(t) is symmetric by definition. This result is quite close to the dynamics of the

propagated a priori state covariance (Eq. B.13) other than the final term. Defining the matrix

∆P̄ (t∣tk−1) = P̄ (t∣tk−1) −P(t∣tk−1), the following differenced dynamics are obtained.

∆ ˙̄P (t∣tk−1) = [Axx(t) +P(t∣tk−1)Apx(t)]∆P̄ (t∣tk−1) +∆P̄ (t∣tk−1) [Axx(t) +P(t∣tk−1)Apx(t)]
T

+P(t∣tk−1)Apx(t)P(t∣tk−1) (B.18)

The solution to the top line of this equation is ∆P̄ (t∣tk−1) = 0, ∀t ∈ R. However, because of the

presence of the final term this is not the case. As such, we conclude that these two matrices are

not equal for GL-OCBE. This term is zero for the BL-OCBE since Apx(t) = 0, ∀t ∈ R, which is why

these matrices are equivalent for that version of the estimator.

In general, we can conclude that P(t∣tk−1) = P̄ (t∣tk−1) if and only if Apx(t) = 0, ∀t ∈ R. We

are able to draw other conclusions as well. As the solution to a matrix Riccati equation with a

symmetric matrix for an initial condition, P(t∣tk−1) is guaranteed to be symmetric for all time.

Given the initial condition is positive definite, and Q̃(t) also has this requirement, P(t∣tk−1) is

also guaranteed to be a positive definite matrix [14]. Because this matrix is symmetric positive

definite, is solved via a matrix differential Riccati Equation, has a covariance as its initial conditions,

and occupies the spot in the GL-OCBE where the propagated a priori state covariance would go

for a Kalman Filter implementation it has very covariance-like properties. Thus, we term it the

propagated a priori state quasi-covariance.

B.3 Uncertainty of the State Estimate at the a priori Epoch

The covariance of the state estimate at the a priori state epoch (P̂k−1∣k) must be derived in a

manner similar to the propagated a priori state covariance (P̄k∣k−1) - meaning the presence of state
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and adjoint process noise terms requires the calculation of coupling with state propagation errors.

This process start by defining this state estimate as a mean term summed with a zero mean error

term. This error term may then be calculated via the definition of the state estimate at the a priori

epoch (Eq. 3.37).

δx̂k−1∣k =E [δx̂k−1∣k] + η̂k−1∣k (B.19)

η̂k−1∣k =Ik−1 (η̄k−1∣k−1 + P̄k−1∣k−1Φ−1
pp v⃗p(tk)) +Lk−1 (εk − H̃kη̄k∣k−1)

Using this error term, the associated covariance is defined as indicated below.

P̂k−1∣k = E [η̂k−1∣kη̂
T
k−1∣k] (B.20)

Subbing in the appropriate relations we obtain the following solution.

P̂k−1∣k =Ik−1 (P̄k−1∣k−1 + P̄k−1∣k−1Φ−1
ppE [v⃗p(tk)v⃗p(tk)

T ]Φ−T
pp P̄k−1∣k−1)I

T
k−1 (B.21)

+Lk−1 (Rk + H̃kP̄k∣k−1H̃
T
k )LTk−1

+ Ik−1E [η̄k−1∣k−1v⃗p(tk)
T ]Φ−T

pp P̄k−1∣k−1I
T
k−1 + Ik−1P̄k−1∣k−1Φ−1

ppE [v⃗p(tk)η̄
T
k−1∣k−1]I

T
k−1

− Ik−1E [η̄k−1∣k−1η̄
T
k∣k−1] H̃

T
k L

T
k−1 −Lk−1H̃kE [η̄k∣k−1η̄

T
k−1∣k−1]I

T
k−1

− Ik−1P̄k−1∣k−1Φ−1
ppE [v⃗p(tk)η̄

T
k∣k−1] H̃

T
k L

T
k−1 −Lk−1H̃kE [η̄k∣k−1v⃗p(tk)

T ]Φ−T
pp P̄k−1∣k−1I

T
k−1

This solution has many expectations that must be calculated before it is complete and imple-

mentable. These expectations are evaluated below. Similar to the approach in Section B.1, the

evaluation of Eqs. B.24 and B.25 requires linearization. The resulting equations are exact though,

since the time gap over which the linearization takes place is infinitesimal. Also, the arguments

from Eq. B.10 apply to Eqs. B.22 and B.23. The expectations are zero since an instantaneous

acceleration has no effect on a previous state.

E [v⃗p(tk)η̄
T
k−1∣k−1] =∫

t

tk−1
Φpx(t, τ)B(τ)E [w⃗(τ)η̄Tk−1∣k−1]dτ = 0 (B.22)

E [v⃗x(tk)η̄
T
k−1∣k−1] =∫

t

tk−1
Φxx(t, τ)B(τ)E [w⃗(τ)η̄Tk−1∣k−1]dτ = 0 (B.23)
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E [vp(tk)v⃗p(tk)
T ] =∫

t

tk−1
∫

t

tk−1
Φpx(t, τ1)B(τ1)E [w⃗(τ1)w⃗(τ2)

T ]B(τ2)
TΦpx(t, τ2)

Tdτ1dτ2 (B.24)

=∫

t

tk−1
∫

t

tk−1
Φpx(t, τ1)B(τ1)Q̃(τ2)δ(τ2 − τ1)B(τ2)

TΦpx(t, τ2)
Tdτ1dτ2

= lim
ε→0

(
1

ε
)∫

t

tk−1
∫

τ2+
ε
2

τ2−
ε
2

Φpx(t, τ1)B(τ1)dτ1Q̃(τ2)B(τ2)
TΦpx(t, τ2)

Tdτ2

= lim
ε→0

(
1

ε
)∫

t

tk−1
∫

τ2+
ε
2

τ2−
ε
2

[Φpx(t, τ2) − (Apx(t)Φxx(t, τ2) +App(t)Φpx(t, τ2)) (τ2 − τ1)]

× [B(τ2) − Ḃ(τ2)(τ2 − τ1)]dτ1Q̃(τ2)B(τ2)
TΦpx(t, τ2)

Tdτ2

=∫

t

tk−1
Φpx(t, τ2)B(τ2)Q̃(τ2)B(τ2)

TΦpx(t, τ2)
Tdτ2

E [vp(tk)v⃗x(tk)
T ] =∫

t

tk−1
∫

t

tk−1
Φpx(t, τ1)B(τ1)E [w⃗(τ1)w⃗(τ2)

T ]B(τ2)
TΦxx(t, τ2)

Tdτ1dτ2 (B.25)

=∫

t

tk−1
∫

t

tk−1
Φpx(t, τ1)B(τ1)Q̃(τ2)δ(τ2 − τ1)B(τ2)

TΦxx(t, τ2)
Tdτ1dτ2

= lim
ε→0

(
1

ε
)∫

t

tk−1
∫

τ2+
ε
2

τ2−
ε
2

Φpx(t, τ1)B(τ1)dτ1Q̃(τ2)B(τ2)
TΦxx(t, τ2)

Tdτ2

= lim
ε→0

(
1

ε
)∫

t

tk−1
∫

τ2+
ε
2

τ2−
ε
2

[Φpx(t, τ2) − (Apx(t)Φxx(t, τ2) +App(t)Φpx(t, τ2)) (τ2 − τ1)]

× [B(τ2) − Ḃ(τ2)(τ2 − τ1)]dτ1Q̃(τ2)B(τ2)
TΦxx(t, τ2)

Tdτ2

=∫

t

tk−1
Φpx(t, τ2)B(τ2)Q̃(τ2)B(τ2)

TΦxx(t, τ2)
Tdτ2

E [η̄k∣k−1η̄
T
k−1∣k−1] = [Φxx +Pk∣k−1Φpx] P̄k−1∣k−1 +Pk∣k−1E [vp(tk)η̄

T
k−1∣k−1] + [vx(tk)η̄

T
k−1∣k−1] (B.26)

= [Φxx +Pk∣k−1Φpx] P̄k−1∣k−1

E [η̄k∣k−1v⃗p(tk)
T ] = [Φxx +Pk∣k−1Φpx]E [η̄k−1∣k−1v⃗p(tk)

T ] +Pk∣k−1E [vp(tk)v⃗p(tk)
T ] (B.27)

+ [vx(tk)v⃗p(tk)
T ]

=Pk∣k−1∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ

+ ∫

t

tk−1
Φxx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ

Subbing all of these results into Eq. B.21, a final version of the covariance matrix is obtained.

In the BL-OCBE implementation each of the integrals remaining in this solution is zero since
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Φpx(t, τ) = 0, ∀t, τ ∈ R. As such the BL-OCBE implementation does not require any integration

beyond the nominal state and STM.

P̂k−1∣k =Ik−1P̄k−1∣k−1I
T
k−1 +Lk−1 (Rk + H̃kP̄k∣k−1H̃

T
k )LTk−1 (B.28)

+ Ik−1P̄k−1∣k−1Φ−1
pp (∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ)Φ−T
pp P̄k−1∣k−1I

T
k−1

− Ik−1P̄k−1∣k−1 [Φxx +Pk∣k−1Φpx]
T
H̃T
k L

T
k−1 −Lk−1H̃k [Φxx +Pk∣k−1Φpx] P̄k−1∣k−1I

T
k−1

− Ik−1P̄k−1∣k−1Φ−1
pp [∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

TdτPk∣k−1] H̃
T
k L

T
k−1

− Ik−1P̄k−1∣k−1Φ−1
pp [∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦxx(t, τ)

Tdτ] H̃T
k L

T
k−1

−Lk−1H̃k [Pk∣k−1∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]Φ−T
pp P̄k−1∣k−1I

T
k−1

−Lk−1H̃k [∫

t

tk−1
Φxx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]Φ−T
pp P̄k−1∣k−1I

T
k−1

B.4 Uncertainty of the State Estimate at the Measurement Epoch

The covariance of the state estimate at the measurement epoch (P̂k∣k) is a relatively easy

quantity to obtain since there is no coupling between epochs that must be accounted for as is the

case with the state estimate at the a priori epoch (see Section B.3). Defining this estimate as the

summation of a mean and zero mean error term (η̂k∣k), that error term can be calculated via the

GL-OCBE definition of the state estimate at the a priori epoch (Eq. 3.41).

δx̂k∣k =E [δx̂k∣k] + η̂k∣k (B.29)

η̂k∣k =η̄k∣k−1 +Lk (εk − H̃kη̄k∣k−1)

Using this error term we define the associated covariance as demonstrated below.

P̂k∣k = E [η̂k∣kη̂
T
k∣k] (B.30)
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By plugging Eq. B.29 in Eq. B.31, an analytical expression for the covariance of interest may be

obtained using definitions of the involved error terms.

P̂k∣k = (In×n −LkH̃k) P̄k∣k−1 (In×n −LkH̃k)
T
+LkRkL

T
k (B.31)

B.5 Uncertainty of the Control Estimate

The optimal control estimate from OCBE is one of the biggest things that separates it from

other estimators. In order to provide a full estimate of the control, an uncertainty metric (the control

estimate covariance - Q̂(t)) will also be provided as derived in this section. This derivation starts

with the linearization of the results of the Pontryagin Minimum Principle (Eq. A.19). Defining the

solution as a mean summed with a zero mean error term (ŵ(t)), this error term may be used to

define the desired covariance as shown below.

δû(t) =E [δû(t)] + ŵ(t) (B.32)

ŵ(t) = [w⃗(t) − Q̃(t)B(t)T v⃗p(t∣tk−1)]

− Q̃(t)B(t)T [(Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) η̂k−1∣k +Φpp(t, tk−1)P̄

−1
k−1∣k−1η̄k−1∣k−1]

Q̂(t) = E [ŵ(t)ŵ(t)T ] (B.33)
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This covariance may be solved for by subbing Eq. B.32 into Eq. B.33 and calculating all resulting

expectations. The majority of these expectations were calculated in Sections B.1 and B.3.

Q̂(t) =Q̃(t)δ(t − τ) + Q̃(t)B(t)TE [v⃗p(t∣tk−1)v⃗p(t∣tk−1)
T ]B(t)Q̃(t) (B.34)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) P̂k−1∣k (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)TΦpp(t, tk−1)P̄
−1
k−1∣k−1Φpp(t, tk−1)

TB(t)Q̃(t)

−E [w⃗(t)v⃗p(t∣tk−1)
T ]B(t)Q̃(t) − Q̃(t)B(t)TE [v⃗p(t∣tk−1)w⃗(t)T ]

−E [w⃗(t)η̂Tk−1∣k] (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)

T
B(t)Q̃(t)

−Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̂k−1∣kw⃗(t)T ]

+Q̃(t)B(t)TE [v⃗p(t∣tk−1)η̂
T
k−1∣k] (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̂k−1∣kv⃗p(t∣tk−1)

T ]B(t)Q̃(t)

+Q̃(t)B(t)TE [v⃗p(t∣tk−1)η̄
T
k−1∣k−1] (Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)T (Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̄k−1∣k−1v⃗p(t∣tk−1)

T ]B(t)Q̃(t)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̂k−1∣kη̄

T
k−1∣k−1] (Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)T (Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̄k−1∣k−1η̂

T
k−1∣k] (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

E [η̂k−1∣kw⃗(t)T ] =Ik−1 (E [η̄k−1∣k−1w⃗(t)T ] + P̄k−1∣k−1Φ−1
ppE [v⃗p(tk)w⃗(t)T ]) (B.35)

−Lk−1H̃kE [η̄k∣k−1w⃗(t)T ]

= −Lk−1H̃k (Φxx +Pk∣k−1Φpx)E [η̄k−1∣k−1w⃗(t)T ] −Lk−1H̃kPk∣k−1E [vp(tk)w⃗(t)T ]

−Lk−1H̃kE [vx(tk)w⃗(t)T ]

= −Lk−1H̃kE [vx(tk)w⃗(t)T ]

= −
1

2
Lk−1H̃kB(t)Q̃(t)
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E [η̂k−1∣kv⃗p(t∣tk−1)
T ] =Ik−1 (E [η̄k−1∣k−1v⃗p(t∣tk−1)

T ] + P̄k−1∣k−1Φ−1
ppE [v⃗p(tk)v⃗p(t∣tk−1)

T ]) (B.36)

−Lk−1H̃kE [η̄k∣k−1v⃗p(t∣tk−1)
T ]

= (Ik−1P̄k−1∣k−1Φ−1
pp −Lk−1H̃kPk∣k−1)E [v⃗p(tk)v⃗p(t∣tk−1)

T ]

−Lk−1H̃kE [vx(tk)v⃗p(t∣tk−1)
T ]

= (Ik−1P̄k−1∣k−1Φ−1
pp −Lk−1H̃kPk∣k−1) [∫

t

tk−1
Φpx(tk, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]

−Lk−1H̃k [∫

t

tk−1
Φxx(tk, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]

E [η̂k−1∣kη̄
T
k−1∣k−1] =Ik−1 (E [η̄k−1∣k−1η̄

T
k−1∣k−1] + P̄k−1∣k−1Φ−1

ppE [v⃗p(tk)η̄
T
k−1∣k−1]) (B.37)

−Lk−1H̃kE [η̄k∣k−1η̄
T
k−1∣k−1]

=Ik−1P̄k−1∣k−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)E [η̄k−1∣k−1η̄
T
k−1∣k−1]

−Lk−1H̃kPk∣k−1E [vp(tk)η̄
T
k−1∣k−1] −Lk−1H̃kE [vx(tk)η̄

T
k−1∣k−1]

= [Ik−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)] P̄k−1∣k−1

Q̂(t) =Q̃(t)δ(t − τ) + Q̃(t)B(t)T [∫

t

tk−1
Φpx(t, τ)B(τ)Q̃(τ)B(τ)TΦpx(t, τ)

Tdτ]B(t)Q̃(t) (B.38)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) P̂k−1∣k (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)TΦpp(t, tk−1)P̄
−1
k−1∣k−1Φpp(t, tk−1)

TB(t)Q̃(t)

+
1

2
Q̃(t)B(t)T H̃T

k L
T
k−1 (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+
1

2
Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)Lk−1H̃kB(t)Q̃(t)

+Q̃(t)B(t)TE [v⃗p(t∣tk−1)η̂
T
k−1∣k] (Φpx(t, tk−1) −Φpp(t, tk−1)P̄

−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)E [η̂k−1∣kv⃗p(t∣tk−1)

T ]B(t)Q̃(t)

+Q̃(t)B(t)T (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1) [Ik−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)]

× P̄k−1∣k−1 (Φpp(t, tk−1)P̄
−1
k−1∣k−1)

T
B(t)Q̃(t)

+Q̃(t)B(t)T (Φpp(t, tk−1)P̄
−1
k−1∣k−1) P̄k−1∣k−1 [Ik−1 −Lk−1H̃k (Φxx +Pk∣k−1Φpx)]

T

× (Φpx(t, tk−1) −Φpp(t, tk−1)P̄
−1
k−1∣k−1)

T
B(t)Q̃(t)
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Subbing all of these results into Eq. B.34 (save for Eq. B.36 for space consideration) we

obtain the final result in Eq. B.38. As is the case throughout this text, when the time arguments

are not specified on STM quadrants and other values the assumption is they are evaluated between

tk−1 and tk.

B.6 Numerical Implementation of Process Noise Terms

The process noise terms discussed do not have analytical solutions in a GL-OCBE formu-

lation. In this section we will provide alternate forms of these variables that allow for simpler

numerical implementation.

The implementation issues hinge on requiring an STM of the form Φ(tk, t) where tk is greater

than or equal to t. When numerically integrating the STM the form we have is Φ(t, tk−1). Thus,

we want all portions of the STM to reflect this. Using the definition of the STM we and rewrite

the bounds on the STM as shown below.

Φ(tk, τ) =Φ(tk, t)Φ(t, τ) (B.39)

Φxx(tk, τ) =Φxx(tk, t)Φxx(t, τ) +Φxp(tk, t)Φpx(t, τ)

Φpx(tk, τ) =Φpx(tk, t)Φxx(t, τ) +Φpp(tk, t)Φpx(t, τ)

Similarly, we may use symplectic properties of the STM inverse to rewrite the STM as shown

below.

Φ(t, τ) =Φ(t, tk−1)Φ(τ, tk−1)
−1 (B.40)

Φxx(t, τ) =Φxx(t, tk−1)Φpp(τ, tk−1)
T
−Φxp(t, tk−1)Φpx(τ, tk−1)

T

Φxp(t, τ) =Φxp(t, tk−1)Φxx(τ, tk−1)
T
−Φxx(t, tk−1)Φxp(τ, tk−1)

T

Φpx(t, τ) =Φpx(t, tk−1)Φpp(τ, tk−1)
T
−Φpp(t, tk−1)Φpx(τ, tk−1)

T

Φpp(t, τ) =Φpp(t, tk−1)Φxx(τ, tk−1)
T
−Φpx(t, tk−1)Φxp(τ, tk−1)

T

Subbing these results into the definitions of v⃗x(tk∣tk−1) and v⃗p(tk∣tk−1), we obtain them as
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functions of v⃗x(t∣tk−1) and v⃗p(t∣tk−1) as shown below.

v⃗x(tk∣tk−1) =∫

tk

t
Φxx(tk, τ)B(τ)w⃗(τ)dτ (B.41)

+ [Φxx(tk, tk−1)Φpp(t, tk−1)
T
−Φxp(tk, tk−1)Φpx(t, tk−1)

T ] v⃗x(t∣tk−1)

+ [Φxp(tk, tk−1)Φxx(t, tk−1)
T
−Φxx(tk, tk−1)Φxp(t, tk−1)

T ] v⃗p(t∣tk−1)

v⃗p(tk∣tk−1) =∫

tk

t
Φpx(tk, τ)B(τ)w⃗(τ)dτ (B.42)

+ [Φpx(tk, tk−1)Φpp(t, tk−1)
T
−Φpp(tk, tk−1)Φpx(t, tk−1)

T ] v⃗x(t∣tk−1)

+ [Φpp(tk, tk−1)Φxx(t, tk−1)
T
−Φpx(tk, tk−1)Φxp(t, tk−1)

T ] v⃗p(t∣tk−1)

This result allows us to easily caculuate the following expectations, which are required when

computing Q̂(t).

E [v⃗x(tk∣tk−1)v⃗x(t∣tk−1)
T ] = [Φxx(tk, tk−1)Φpp(t, tk−1)

T
−Φxp(tk, tk−1)Φpx(t, tk−1)

T ] (B.43)

×E [v⃗x(t∣tk−1)v⃗x(t∣tk−1)
T ]

+ [Φxp(tk, tk−1)Φxx(t, tk−1)
T
−Φxx(tk, tk−1)Φxp(t, tk−1)

T ]

×E [v⃗p(t∣tk−1)v⃗x(t∣tk−1)
T ]

E [v⃗x(tk∣tk−1)v⃗p(t∣tk−1)
T ] = [Φxx(tk, tk−1)Φpp(t, tk−1)

T
−Φxp(tk, tk−1)Φpx(t, tk−1)

T ] (B.44)

×E [v⃗x(t∣tk−1)v⃗p(t∣tk−1)
T ]

+ [Φxp(tk, tk−1)Φxx(t, tk−1)
T
−Φxx(tk, tk−1)Φxp(t, tk−1)

T ]

×E [v⃗p(t∣tk−1)v⃗p(t∣tk−1)
T ]

E [v⃗p(tk∣tk−1)v⃗x(t∣tk−1)
T ] = [Φpx(tk, tk−1)Φpp(t, tk−1)

T
−Φpp(tk, tk−1)Φpx(t, tk−1)

T ] (B.45)

×E [v⃗x(t∣tk−1)v⃗x(t∣tk−1)
T ]

+ [Φpp(tk, tk−1)Φxx(t, tk−1)
T
−Φpx(tk, tk−1)Φxp(t, tk−1)

T ]

×E [v⃗p(t∣tk−1)v⃗x(t∣tk−1)
T ]
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E [v⃗p(tk∣tk−1)v⃗p(t∣tk−1)
T ] = [Φpx(tk, tk−1)Φpp(t, tk−1)

T
−Φpp(tk, tk−1)Φpx(t, tk−1)

T ] (B.46)

×E [v⃗x(t∣tk−1)v⃗p(t∣tk−1)
T ]

+ [Φpp(tk, tk−1)Φxx(t, tk−1)
T
−Φpx(tk, tk−1)Φxp(t, tk−1)

T ]

×E [v⃗p(t∣tk−1)v⃗p(t∣tk−1)
T ]

Making the following definitions (Eqs. B.47 - B.49) we can reformulate the previous expec-

tations into functions of values that are easily integrated in a numerical integration scheme.

Θpp,pp(t∣tk−1) = ∫

t

tk−1
Φpp(τ, tk−1)

TB(τ)Q̃(τ)B(τ)TΦpp(τ, tk−1)dτ (B.47)

Θpx,px(t∣tk−1) = ∫

t

tk−1
Φpx(τ, tk−1)

TB(τ)Q̃(τ)B(τ)TΦpx(τ, tk−1)dτ (B.48)

Θpx,pp(t∣tk−1) = ∫

t

tk−1
Φpx(τ, tk−1)

TB(τ)Q̃(τ)B(τ)TΦpp(τ, tk−1)dτ (B.49)

E [v⃗p(t∣tk−1)v⃗x(t∣tk−1)
T ] =Φpx(t, tk−1)Θpp,pp(t∣tk−1)Φxx(t, tk−1)

T (B.50)

−Φpp(t, tk−1)Θpx,pp(t∣tk−1)Φxx(t, tk−1)
T

−Φpx(t, tk−1)Θpx,pp(t∣tk−1)
TΦxp(t, tk−1)

T

+Φpp(t, tk−1)Θpx,px(t∣tk−1)Φxp(t, tk−1)
T

E [v⃗p(t∣tk−1)v⃗p(t∣tk−1)
T ] =Φpx(t, tk−1)Θpp,pp(t∣tk−1)Φpx(t, tk−1)

T (B.51)

−Φpp(t, tk−1)Θpx,pp(t∣tk−1)Φpx(t, tk−1)
T

−Φpx(t, tk−1)Θpx,pp(t∣tk−1)
TΦpp(t, tk−1)

T

+Φpp(t, tk−1)Θpx,px(t∣tk−1)Φpp(t, tk−1)
T

E [v⃗x(t∣tk−1)v⃗x(t∣tk−1)
T ] =Φxx(t, tk−1)Θpp,pp(t∣tk−1)Φxx(t, tk−1)

T (B.52)

−Φxp(t, tk−1)Θpx,pp(t∣tk−1)Φxx(t, tk−1)
T

−Φxx(t, tk−1)Θpx,pp(t∣tk−1)
TΦxp(t, tk−1)

T

+Φxp(t, tk−1)Θpx,px(t∣tk−1)Φxp(t, tk−1)
T


